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INTRODUCTION

This document describes progress in the development of finite element codes for the

prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan

engines. The report consists of nine papers which have appeared in archival journals and

conference proceedings, or are presently in review for publication. Brief summaries of each

paper are given here.

1. Aft Fan Duct Acoustic Radiation. (Journal of Sound and Vibration 1998 213(2),

235- 257)

Details are given of a finite element code which has been developed for the prediction

of the radiated acoustic field from the aft fan duct of a turbofan engine. A new technique

based on a penalty method is introduced to enforce the condition of continuity of acoustic

pressure across the shear layer which bounds the jet.

2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly

Moving Medium. (Journal of Sound and Vibration 1999 224(4), 665-687)

Variable order mapped infinite wave envelope elements are introduced for finite

element modeling of acoustic radiation in a uniformly moving medium. The elements are

applied to the problem of turbofan inlet radiation, and are shown to provide an effective non-

reflecting boundary condition which allows substantial reduction of the FEM mesh in the

near field. Results are shown for the acoustic pressure in the near field.

3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped

Infinite Wave Envelope Elements. (Journal of Computational Acoustics 2000, 8(1),

25-42.)

Variable order mapped infinite wave envelope elements are introduced for finite

element modeling of acoustic radiation in a uniformly moving medium. The elements are

applied to the problem of turbofan inlet and afl fan duct radiation, and are shown to provide

an effective non-reflecting boundary condition which allows substantial reduction of the

FEM mesh in the near field. Results are shown for the acoustic pressure in the near field and

in the far field.



. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound

Propagation in Lined Flow Ducts. (AIAA Paper 99-1821, 1999 AIAA Aeroacoustics

Conference, Seattle. Provisionally accepted for the Journal of Fluid Mechanics)

An analytical solution based on the method of multiple-scales for acoustic

propagation in nonuniform ducts with compressible potential mean flow is compared against

a finite element solution. This provides a useful benchmark for the FEM results in cases

when scattering of the incident mode does not dominate the transmitted acoustic field. In

general this will be true for incident modes which are nearly cut off.

5. Acoustic Propagation at High Frequencies in Ducts. (AIAA Paper 2000-1953, 2000

AIAA Aeroacoustics Conference, Maui, Hawaii)

The problem of acoustic propagation in ducts at high non-dimensional frequencies

is examined. It is found that in FEM models using quadratic elements, good solutions for the

acoustic potential are achieved using the conventional 10 node per wave length rule of

thumb. However, good solutions, via postprocessing, for acoustic pressure require

substantially increased mesh density. Cubic and quartic elements are examined and it is

found that cubic elements offer are more efficient than quadratic elements for acQustic

potential and offer a substantial improvement in acoustic pressure post-processing. Non-

dimensional frequencies up to 100 are considered.

6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential

Flow. (Journal of Sound and Vibration, in review)

The acoustic boundary condition at an impedance wall in a nonuniform duct with

compressible mean flow is implemented in a weighted residuals finite element formulation.

The boundary condition appears to require data which includes the tangential derivative of

the tangential mean flow velocity, the normal derivative of the normal component of mean

flow velocity, and the derivatives of the mean flow density and the boundary admittance

along the boundary. It is shown that it can be substantially simplified to eliminate the

tangential derivatives of mean flow properties and to eliminate completely the normal

component of mean flow velocity. Implementation of the boundary condition is shown to

involve no difficulty.

7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows.

(Journal of Sound and Vibration, in review)

A reverse flow theorem for acoustic propagation in compressible potential flow has

been obtained directly from the field equations without recourse to energy conservation

arguments. A reciprocity theorem for the scattering matrix for propagation of acoustic modes

in a duct with either acoustically rigid walls or acoustically absorbing walls follows. It is

found that for a source at a specific end of the duct, suitably scaled reflection matrices in



directandreverseflow haveareciprocalrelationship.Scaledtransmissionmatricesobtained
for directflow andreversedflow with simultaneousswitchingof sourcelocationfromone
endto theotheralsohaveareciprocalrelationship.
Reciprocalrelationsprovideanexcellentbenchmarkfor verificationof acousticpropagation
computations.Numericalverificationof thereciprocalrelationshipsisgiveninacompanion
paper.

8.ReciprocityandAcousticPowerin OneDimensionalCompressiblePotentialFlows.
(Journalof SoundandVibration, in review)

A reverseflow theoremfor onedimensionalacousticpropagationin compressible
potentialflowhasbeenobtaineddirectlyfromthefield equationswithoutrecoursetoenergy
conservationarguments.Reciprocity relationships for the scatteringcoefficients for
propagationarederived.It is foundthatfor asourceat a specificendof theduct,suitably
scaledreflectioncoefficientsindirectandreverseflowhaveareciprocalrelationship.Scaled
transmissioncoefficientsobtainedfor direct flow andreversedflow with simultaneous
switchingof sourcelocationfrom oneendto theotheralsohaveareciprocalrelationship.
Reciprocalrelationsandpowerconservationargumentsareusedto showthatscaledpower
reflectionandtransmissioncoefficientsareinvariantto flow reversalandswitchingofsgurce
location from oneend of the duct to the other.Numericalverification of the reciprocal
relationshipsis givenin a companionpaperin which multiple modepropagationandone
dimensionalpropagationareconsidered.

9. NumericalExperimentson Acoustic Reciprocity in CompressiblePotentialFlows.
(Journalof SoundandVibration, in review)

A reciprocitytheoremfor thescatteringmatrix forpropagationof acousticmodesin
aductwith acousticallyhardwallsor with acousticallyabsorbingwalls hasbeengivenin a
companionpublication.It wasfoundthatfor asourceataspecifiedendof theduct,suitably
scaledreflectionmatricesin directandreverseflow haveareciprocalrelationship.Scaled
transmissionmatricesobtainedfor direct flow and reversedflow with simultaneous
switchingof sourcelocationfrom oneendto theotheralsohaveareciprocalrelationship.
A reverseflow theoremfor theequivalentonedimensionalpropagationmodel,which is a
goodapproximationto thethreedimensionalmodelatlow frequencies,wasalsoobtained.
In thiscase,usingreciprocityandacousticpowerconservationargumentsit is additionally
foundthattheacousticpowertransmissioncoefficientis thesamefor asourceat eitherend
of the duct for a given flow direction.This result leadsto an invariancetheoremwhich
relatesacousticpowerpropagateddueto sourcesof equalpressureamplitudeatthetwoends
of the duct. Numerical verification of thesereciprocalrelationshipsis given here for
propagationinaxially symmetric(circularandannular)ductswith multi-modalpropagation
andatlow frequencieswhenaonedimensionalmodelis appropriate.
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A finite element code has been developed for the prediction of the radiated acoustic field

from the aft fan duct of a turbofan engine. The acoustic field is modelled based on the

assumption that the steady flow in and around the nacelle is irrotational as is the acoustic

perturbation. The geometry of the nacelle is axisymmetric and the acoustic source is

harmonic and decomposed into its angular harmonics. The steady flow is computed on the
acoustic mesh and provides data for the acoustic calculations. The jet is included in the

steady flow potential flow model by separating the interior and exterior flow outside the

aft fan duct with a thin barrier created by disconnecting the computational domain. The
jet and exterior flow are allowed to merge at a defined distance downstream. In the acoustic

radiation model continuity of acoustic particle velocity is implicitly satisfied across the

shear layer by careful treatment of the surface integral which appears in the finite element

method (FEM) formulation. Pressure continuity is enforced by using a penalty constraint

on the shear layer. A model for locally reacting acoustic treatment provides a boundary

condition on the duct walls. An attempt has been made to limit reflections on the artificial

baffle introduced to limit the computational domain, but this is only moderately successful.

An old, but reliable frontal solution routine has been updated with considerable impact

on computational time. Example calculations are given which show the success achieved

in satisfying the complicated interface conditions on the shear layer and the characteristics

of the solutions at relatively high frequencies where the refinement of the mesh becomes

a limiting consideration for practical computations.
,_ 1998 Academic Press Limited

INTRODUCTION

In approach and cutback conditions the acoustic field from high by-pass ratio turbofan

engines is dominated by tonal noise generated by blade/vane interactions and radiated

forward from the nacelle inlet and to the rear from the aft fan duct. In order to meet noise

control goals active and passive techniques can be employed to control the source

mechanisms and to attenuate acoustic propagation in the inlet and fan exhaust ducts.

Methods for the prediction of the effects of various noise control measures on far field

acoustic radiation are required in the design process. The investigation reported here is

directed toward the development of a robust computational scheme for the prediction of

the acoustic field attributed to tonal sources typical of blade/vane interaction in the aft

fan duct. It is intended to be coupled to a suitable model of the source mechanism.

The model developed is an extension of computational methods which were developed

for inlet radiation [1-4]. The inlet radiation model was based on the assumption of

oo22-46ox/98/22o235 + 23 525.00i0tsv971480 I998 Academic Press Limited
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irrotational acoustic perturbations on an irrotationa[ steady flow. A finite element code

was developed which could accurately model the geometric details of an axisymmetric inlet
as well as the steady flow field in and around the inlet, including the effect of forward flight.

Rapid advances in the capabilities of work stations has made it a realistic goal to accurately

predict the acoustic field around realistic geometries at realistic frequencies. Reported here

is the development of a similar model for aft radiated noise. The most significant extension

is the representation of the important effects of the fan duct jet imbedded in the

surrounding flow which includes forward flight effects. The presence of the jet introduces

interesting conditions which must be imposed on acoustic propagation across the shear

layer which confines it. The methods for achieving these conditions in the context of the
finite element method (FEM) are discussed in detail here.

2. FORMULATION OF THE ACOUSTIC RADIATION PROBLEM

The aft radiated acoustic field from a turbofan nacelle is described by a potential

formulation as previously introduced for inlet acoustic radiation [1-4]. Figure 1 is a sketch

of the important geometrical features of the aft fan duct and centre body. The nacelle has

a forward flight Mach number M0, which at large distances is equivalent to a uniform flow

directed away from the fan exhaust duct exit plane. Near the nacelle this velocity field is
non-uniform. The exhaust flow, defined at the source plane by Mach number M,, emerges

as a potential flow jet and extends down stream confined by a shear layer separating it
from the exterior flow. The shear layer is terminated at a defined length at which point

the jet and external flow merge as potential flows. The potential flow merging of the jet
and exterior flow at the end of the shear layer produces a localized steady flow anomaly

which has not been observed to substantially influence the acoustic radiation.

Computations are to be carried out using the FEM in a domain including the interior of
the aft fan exhaust duct and an exterior region made finite by invoking a radiation

condition at an outer computational boundary and by introducing an artificial baffle

oriented to produce a minimal effect on the acoustic radiation field.

The nacelle geometry and the steady flow field are assumed to be axially symmetric. The
noise source is assumed to be harmonic in time and is decomposed into its angular modal

content, allowing a two-dimensional representation of the acoustic field in an (x, r) plane

through the nacelle axis of symmetry. The solution domain is shown in Figure 2. It is the

x, r plane in cylindrical co-ordinates. The source plane is designated by CI. The fan or exit

guide vane source is input on this plane by specifying complex amplitudes of incident duct
modes (see references [1-4] for details of the implementation of the source boundary

_ Exterior flow

Shear layer

Source

plane _ Interior flow

Figure 1, Sketch of the geometry, of the aft fan duct. emphasizing the exhaust flow and shear layer.
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Region IV
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Region [I

C b Jetshear

(2[ Region I

Figure 2. Computational domain showing the boundaries and regions.

x

condition.). The nacelle outer surface is C,,. The outer boundary of the solution domain

C:o is a circle which is a constant phase surface for an acoustic source located at the origin.

On this boundary a radiation condition is specified. Wave envelope elements [1-4] are used

in the far field to reach the outer boundary with minimal cost in mesh refinement. An

artificial baffle C_ limits the solution domain well upstream of the fan exit plane and is

chosen to be swept in such a way that a minimal effect on the acoustic field is created.

This baffle is a ray from the origin and in principle at large distances from the source it

should be non-reflecting, although near field effects do lead to reflection. The placement
of the baffle must be considered in terms of the likely orientation of the radiated field. The

baffle can be eliminated if computational efficiency is not a Limiting factor. The shear layer
C_which separates the potential flow jet from the potential exterior flow is a rigid boundary

for the calculation of the steady flow field and is a surface across which appropriate

continuity conditions must be satisfied in the acoustic calculations.

The starting point for the formulation of both the steady mean flow and the acoustic

perturbation consists of the mass and momentum equations and the energy equation in

the form of the isentropic equation of state:

op
0--7+ V -(_V) = O, (1)

a + (v. v)v --- - : ,
P P,_

where LS, t5 and V are fluid properties pressure, density and velocity, at this point in

dimensional form. and p,, and p0 are reference values of pressure and density.
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A weak form of the field equations begins with equation (1) in which solutions for

and V are sought in the class of continuous functions which satisfy the weighted residual
relation

w jdV= w_V..dS 14)
¢ s

for every function W(x) in the class of continuous functions. The surface integral is over
the boundaries of the domain of solution and n is the unit normal out of the domain. In

the finite element discretization process which follows, the surface integral must also be
interpreted at each subdomain boundary, namely the boundaries of the individual
elements. The physical boundaries of the solution domain include the boundaries of the

nacelle, including the source plane, the rigid structural boundaries, and absorbing
boundaries such as acoustic treatment. Other boundaries are the artificial baffle introduced

to limit the solution domain and the outer boundary of the solution domain at which a

radiation condition is applied. All of these boundary conditions are introduced through
the surface integral. The boundary integral is, observed to involve the mass flux normal

to the boundary. The integral is therefore in terms of an essential conservation quantity,
and this is typical of weak formulations in the framework of the FEM. For boundaries

between subdomains (elements) in the FEM discretization at which there is no surface of

discontinuity the integral produces no net contribution. This follows because on such

boundaries the integrals on either side of the boundary produce contributions equal in

magnitude and opposite in sign. In the present problem this applies to all boundaries

between elements, although, as will be shown, a careful interpretation of the surface

integral must be carried out to establish that it vanishes across the shear layer separating

the outer flow field from the jet with a discontinuity in tangential steady flow. In particular,

it seems to be necessary to start from the yet to be linearized form of the weighted
continuity equation (1), and to carefully linearize it to account for the fact that on the shear

layer, which is displaced due to acoustic perturbations, the integral is interpreted to be

evaluated on the surface of discontinuity in tangential steady flow velocity with the unit

normal defined to reflect this. If the field equation is linearized before the weak formulation

is established, an essential contribution to the boundary integral is lost.

3. BOUNDARY CONDITIONS ON THE SHEAR LAYER

Figure 3 shows the idealized interface between the exterior flow and the jet. The surface

of discontinuity in tangential velocity is assumed to be displaced from the mean position
by

Ar(x, O, t) = ((x, O, t), (5)

where ((x, 0, t) is an acoustic perturbation. The normal to the interface is tilted due to

the slope of the shear layer approximately by

An_ = -_.-.-xxn,, (6)

where n_ can be written in terms of the unit vectors n, n,, which are normal and tangent
to the undisplaced shear layer, in the form

0(
n_ = n - -_ n,. (7)

GX
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A_ b

nb B,

Exterior t]ow _ l _ (x) e '( %t-.I m AI_'_

L. ....... z._____.._.z ............. _ _""- '"_ - _ ........ _ 7-

Nominal shear
Aft fan duct Fan exhaust flow

layer location

Figure 3. Geometry of the shear layer interI;ace, showing the acoustically displaced boundary between the jet
and exterior flow.

The orientation of the unit normals here are consistent with the surface below the shear

layer for which the normal out of the fluid is in the direction of the positive normal fluid

particle velocity, but a similar argument applies if the surface above the shear layer is

considered. The tangential component of the normal to the shear layer is an acoustic

perturbation quantity.
The interface conditions across the shear layer can be determined by examining the mass

flux and momentum flux at a moving surface of discontinuity. A particularly good

explanation is given by Karamcheti [5]. The essential results in the case of a discontinuity

in the velocity tangential to the surface of discontinuity are:

(V,,-V,).n_=(V_-V,).nh=0, _,(V_-V,).n,-_,(V<-V,).nh=0, (8,9)

(10)

Here V_ and V_ are the fluid velocity above and below the discontinuity and V, is the

velocity of an element on the surface of discontinuity. _,, and _, are the fluid densities above

and below the discontinuity and 6,, and/_, are the corresponding pressures. Equation (8)

follows from the tangential component of the momentum equation and equation (9) from

the mass continuity equation. Equation (9) is satisfied automatically due to equation (8).

Equation (10) is the component of the momentum equation normal to the discontinuity.

With equations (8) and (10) it is determined that

`6,,=`6,, (11)

which is the condition that pressure be continuous across the shear layer. The linearized

version of this would require the acoustic perturbation in pressure to be continuous as well

as the pressure of the steady flow.
A linearized version of the surface integral of equation (4) is required for the acoustic

analysis which follows. The fluid velocities are replaced by their perturbation forms

V_ = V,,,n, + v_and V_ = V,,n, + v_, where V,, and V,. are the mean flow tangential velocities
above and below the discontinuity. The densities are replaced by _, = p,, + p,, and

_ = p,, + p_ with the possibly different mean densities given by p,_ and p,,. The acoustic

quantities are now p_ and p,. It is also important to note that the velocity of an element

of the surface of discontinuity is an acoustic quantity and is therefore denoted by V, = v,.
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Equation (7), and equation (8) in linearized form, are equivalent to the familiar conditions

of continuity of particle displacement,

v,,.n--_-+V_,,g,x, vt.n=_-+V,,_ x. (12,13)

The linearized form of the surface integral of equation (4) on the upper and lower surfaces

of the shear layer can then be obtained by using equation (7) and equations (12) and (13)

(and accounting properly for the evaluation of the integral on the surface above the shear

layer):

ffw(pV),n ,dS=ffw, r, dS, (14)
S,! S, l

w(pv). • n_ dS = - wp_ _ dS. 15)
S,_ S,,,

It is apparent from equations (14) and (15) that along the shear layer the net contribution

of the surface integrals will vanish if the steady flow densities above and below the shear

layer are the same. If they are different, as in the case of a hot jet in a cold outer medium.

there will be a net contribution which is effectively a distributed source on the shear layer

with a strength proportional to the difference in the steady flow densities. Th(s is

completely consistent with equation (9). It is also consistent with the rigorous analysis

given by Myers [6].

4. LINEARIZED WEAK FORMULATION

A linearized weak formulation is obtained by continuing with equation (4) for which

the linearization of the boundary integral has been examined. Acoustic propagation and

radiation is modelled based on the assumption that the mean flow in and around the

nacelle is irrotational and that the acoustic perturbation is also irrotational. The potential

formulation makes it possible to introduce mean flow and acoustic perturbation velocity

potentials. Acoustic perturbations are assumed on the steady mean flow such that
¢_ = _, + _, _3= pr + p and _6= pr + p. The acoustic perturbations are assumed to be

harmonic in time and in the angular co-ordinate such that p(x, r, O. t) = p(x, r) e _'......... _,

p(x. r, O, t) = p(x, r) e ''_...... _ and q_(x, r, 0, t) = 4_(x, r) e""....... 'L The acoustic perturbation
in the shear layer position is also assumed to be harmonic in time and the angular

co-ordinate yielding ((x. 0, t) = ((x) e _''....... _}.The steady flow density and velocity are p,,

Vq_,. In linearized form, the weak formulation of equation (4) becomes [4]

f_!f {VW" (P_V(o + PVck,) - ir_Wp]' dV = irI_fI W(p, - PO_, aS
lt S,

+ ff W(p_9"_ + pV¢,) ' ndS.
S

(16)

The weighting functions are taken as W(x, r, 0)= W(x, r)e'""'. Perturbations are in the

form of angular harmonics proportional to e -''° representinkz the decomposition of the
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solution periodic in 0 in a Fourier Series. The angular mode number is a parameter of

the solution. The first surface integral on the right hand side is on the shear layer & and

the second surface integral is over all remaining surfaces bounding the domain. Notice that

the unit normal for the second integral is the normal out of the domain at the surface in

question. The weak formulation continues with the linearized momentum equation [4]

p = _P---_'c'_ (irbq5 + 17_b,. V0),
(17)

which is used to replace p in equation (16), the linearized equation of state,

p = c_p, (18)

which is used to produce an alternative form of the momentum equation in terms of

acoustic pressure,

p = -p,(ir/,_ + Vq%. Vcp). (19)

Equation (19) is used to define acoustic pressure difference on the shear layer and to
post-process the field solution for _b to obtain the acoustic pressure field. The acoustic

particle velocity and acoustic velocity potential are related according to

v = V4_. (20)

The linearization process also produces the weighted residual formulation for the steady

flOW,

ff vw. (p,V(o,) dV = fJ" W(p, VG). ndS,
V S

(21)

and the steady flow momentum equation in terms of the speed of sound,

[v_,. re,- M;.], --

and in terms of the steady flow density,

I 11 {7-- b}
Or = 1 (7- I)(g_br .VqS_- :'v/_) (23)

Equations (16) through (23) are in non-dimensional form where _ is the acoustic potential.

_b, is the local mean flow (reference) potential, p is the acoustic density, p, is the local mean
flow density, and c, is the local speed of sound in the mean flow. All quantities are made

non-dimensional by using the density in the far field, p_., the speed of sound in the far

field, c_., and a reference length which is defined as the duct radius at the source plane.

R, where acoustic modal amplitudes are defined. This plane could be the fan plane or the

exit guide vane plane, but it is not restricted to these locations. The acoustic potential is
non-dimensional with respect to c_R, and the acoustic pressure with respect to p,c:,.

Lengths are made non-dimensional with respect to R. Time is scaled with R/c_, leading
to the definition of non-dimensional frequency tl, = coR/c,_; co is the dimensional source

frequency and -_I_ = M,, is the Mach number in the far field representing the forward flight
effect.

10
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Equation (21) is the weighted residual formulation for the calculation of the

compressible potential flow within and around the nacelle. Equations (22) and (23) are

subsidiary relations that can be used in an iterative solution which at each stage uses a

density field derived from the previous iteration step. V4_,, c_, pr are required data for the

weighted residual formulation of the acoustic problem. In the results reported here only
the first iteration of this process is used to define the potential flow field. This is

accomplished by solving the incompressible problem and then computing a variation in

steady flow density and speed of sound.

The second surface integral in equation (16) provides the boundary conditions on the

duct walls and on the source plane. The modelling of duct acoustic treatment in the context

of this integral is discussed in a later section. The acoustic source is specified by the complex

amplitudes of acoustic duct modes at the source plane. On this plane the FEM modal

values of acoustic potential are replaced by the complex amplitudes of the acoustic

potential modes by an eigenfunction expansion. The incident acoustic modal amplitudes

are input and the reflected modal amplitudes are computed as part of the solution. Details

of this procedure are available in references [1-4].

The same surface integral provides the mechanism for introducing the boundary

conditions on the artificial baffle and the non-reflecting boundary condition at large

distances on the outer boundary of the computational domain. These details are also

explained extensively in references [1-4].

Acoustic pressure and particle displacement are continuous across the shear layer. The

continuity of particle displacement is implicit in the handling of the surface integral on

the shear layer. Continuity of pressure must be explicitly enforced. The implementation

of this condition will be discussed presently.

5. COMPUTATIONAL MESH

A particularly sensitive issue which must be resolved is the construction of a mesh which

is consistent with the geometry requirements and which can be generated automatically
from data describing the nacelle and centre body. It is essential that the mesh be structured

to minimize the bandwidth for the linear equation solver. The major constraining feature

is that the trailing edge of the fan duct is thin or cusped. In addition, the near field mesh

must evolve into a smooth transition to the far field wave envelope mesh.

In order to meet all of these requirements, a mesh which combines quadrilateral and

triangular elements has been used. Figure 4 shows the details of the near field mesh. The

interior of the duct and the extended jet uses conventional eight-node quadrilateral

elements. Most of the exterior region is also composed of quadrilateral elements. However,

a fan shaped region of six-node triangular elements is used to allow a transition around

the sharp trialing edge. Primarily due to the constraint on the mesh structure for

minimizing bandwidth, this transition would not be possible with rectangular elements

without introducing severe distortion in the neighbourhood of the trailing edge. The far

field mesh utilizes the wave envelope element concept [1-4], and presents no problems. A

relatively coarse near and far field mesh is shown in Figure 5 and the wave envelope

element region can be seen. Note in Figure 4 that the exhaust duct trailing edge is reflexed,

representing the most severe case.

Mesh generation produces two mesh connectivities. For the potential flow code, velocity

potential is discontinuous across the shear layer dividing the extended jet from the external

flow. Elements are therefore disconnected across the shear layer. For the radiation code,

acoustic velocity potential is also discontinuous across the shear layer. Elements above and

below the shear layer have additional degrees of freedom on the shear layer boundaries

11
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3.00_

-1.00 43.50 0.50 1.00 1.50 2.00 2.50 3.00

Figure 4. Aft fan duct near field mesh.

representing acoustic particle displacement, which is continuous across the shear layer. The

mesh for the radiation code therefore introduces two degrees of freedom at the nodes on

the shear layer. There are I I degrees of freedom for rectangular elements and nine degrees

of freedom for triangular elements on the shear layer. Pressure continuity is enforced by

12.5

12.5 io.o

Figure 5. Aft fan duct far field mesh with wave envelope region.

12
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Figure 6. Bridging elements on the shear layer.

Exterior flow

l Shear layer-- -y .................

Fan exhaust flow

using a penalty constraint on the shear layer, and it is not necessary to introduce pressure
as an additional variable on the shear layer. However, it has been found convenient to

introduce six-node "rectangular" transition elements of zero thickness between the
standard elements above and below the shear layer for generating the "penalty element

stiffness matrices". In order to maintain consistency in the meshes for the potential flow

calculations and radiation calculations, these elements are accounted for in mesh

generation for both codes. Details of the elements on the shear layer are shown in Figure 6

where for an example a bridging element is inserted between a triangular element above

the shear layer and a rectangular element below the shear layer.

6. STEADY FLOW CALCULATIONS

A potential flow code generates the steady flow field in and around the aft fan duct.

Incompressible potential flow has been assumed as a first approximation. Variations in

density and speed of sound are based on the isentropic equation of state and

incompressible velocity field with specified conditions on Mach number, density, and speed
of sound in the far field. It is within the framework of the general formulation to treat

the potential mean flow as compressible, and the present approach can be viewed as the
"zeroth" iteration of the compressible isentropic case. Fully compressible isentropic mean

flow has been used by the first author in acoustic propagation and scattering calculations

in pipes in which no far field radiation is modelled. In the type of problem considered here

the computational overhead required for the several iterations necessary to produce a

compressible mean flow has not been considered justifiable at the present stage of

development.

13
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Figure 7. Potential field for the steady flow from the aft fan duct and in the surrounding flow field. This case

corresponds to M, = 0.5 and forward flight velocity M0 = 0.2.

The potential flow field has been structured to include flow in a jet region downstream

of the fan duct exit plane. This has been done with the introduction of a "rigid" duct

boundary representing the fan exhaust shear layer which extends the prescribed length of
the jet. The rigid boundary is introduced by permitting the velocity potential to be

discontinuous across the shear layer. At the downstream end of the shear layer the

discontinuity in velocity potential is terminated and merging of the interior and external

flows is permitted. The merging can produce very high velocities and reverse flow near the
termination of the shear layer. This is smoothed out by restricting the velocity near the

end of the shear layer to neither go above a reference velocity which is determined midway

along the underside of the shear layer (in the jet) nor to go below a similarly determined
velocity on the upper side of the shear layer (in the outer flow). In the near field mesh of

Figure 4 the shear layer boundary can be seen to extend downstream about two duct radii.
The merging distance is adjustable, and is chosen to provide sufficient distance for full

effect on the acoustic radiation, and to move the perhaps unrealistic merging region away

from the important part of the acoustic field. Computations for the steady flow field are
carried out on the same mesh used in the acoustic case. This is done so that the steady

flow data is produced in a form compatible with the acoustic mesh. The mesh is invariably

much more dense than would be required for the steady flow calculations, however, the

problem is symmetric, and the solution routine is considerably faster than for the

comparable acoustic problem (about three or four times faster for large meshes).

A typical potential flow field is shown in Figure 7, where the jet and surrounding forward

flight effect contours of velocity potential are clearly shown.

7. ACOUSTIC PRESSURE CONTINUITY ON THE SHEAR LAYER

The linearized weak formulation of equation (16) has the subsidiary condition of

continuity of acoustic pressure across the shear layer. This condition is not easily satisfied

because the formulation is in terms of acoustic velocity potential. However, equation (19)

provides a connection between the acoustic velocity potential above and below the shear

14
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layer which can be exploited to implement the continuity condition by using a penalty

method [7].
The important features of the penalty method can be described relatively easily.

Equation (19) and the condition pressure continuity on the shear layer are used to obtain

/_lp = p,, - p, = p=, irb_b, + _.'k/,&c ) - p''` irb_b,, + M,, _x j = O.
(24)

Equation (24) applies computationally on the shear layer, r = r,. xt <_x <<.x_,, where r, is
the radius of the axially symmetric shear layer and x_, x,_ are the axial co-ordinates of the

left and right ends of the shear layer; x, coincides with the trailing edge of the nacelle at

the fan exit plane. The subscripts l and u denote values of the steady state and acoustic

quantities below and above the shear layer. In the finite element context, the acoustic

potentials 4_1and qS_can be written notionally in terms of a global interpolation matrix

IN(x)]. For example,

4a,(x) = [N(x)]_,, (25)

where q_f is the vector of nodal values of qS_(x) below the shear layer. The interpolation

matrix[N(x)] is a row matrix with etements N,(x), i = 1, NN, where NN is the number

of finite element nodes and .V,(xj)= 1, i=j, N,(xj) = O, i#j,j = 1, NN. The substantial

derivative operators in equation (24) are defined such that, for example,

D,(ep,) = p,, in, + M,_ c_,. (26)

In vector-matrix format,

D,(4>,) = [N(x)I[D,]_I, (27)

where [D,] is a diagonal matrix of operators pr,(ir/, + M_ O/gx). Equation (24) can be written
as

[Np(x)l[qS,, 4_,]r = ([N(x)][D,] - [N(x)I[D,,])[_,, q_,]r = 0. (28)

The modified interpolation matrix [Np(x)] has elements which can be viewed as

interpolating Ap(x) from nodal values of the acoustic potential on either side of the shear

layer. The weighted residual of equation (28) is formed on the shear layer using as

weighting functions elements of [Np*(x)], which are the complex conjugates of the

interpolation functions. This yields

f fiN* (x)]r[No(.v)] dS,[_,, q_,lr = 0.
S,

(29)

This is a weighted residual (or variational) statement that Ap vanishes on the shear layer.

It produces a "stiffness matrix" which is consistent with this statement. If this is appended

to the weighted residual formulation of equation (16) with a large multiplier 2, it forces

15
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the weighted residual formulation to have a solution constrained by equation (24). The

modified weighted residual statement is written as

f;f ;;{VW.(p, Ve_+pV(a,)-irbWp}dV=b b W(pr,-p,,)(,dS

I( W(p,V_b + pV4_), n dS+

s

- 2"II 7VAp dS. (30)
dd

S,

The weighting functions _V(x) introduced in equation (30) are the pressure difference

interpolation functions identified in equation (28). The penatty integral, equation (29), is

introduced along the shear layer and produces penalty stiffness matrices which bridge the

shear ]ayer and include nodal values of acoustic potential on both sides of _he shear Jayer.

This is most easily implemented in the finite element context by introducing transition or

bridging elements on the shear layer as shown in Figure 6. These elements are of zero

thickness with three nodes on the top and three on the bottom to connect to the three nodes

on the conventional triangular or quadrilateral elements above and below the shear layer.

Finite element assembly proceeds as with other elements in the mesh. No new global nodes

are introduced and there is no change in the bandwidth of the formulation nor to the

sequence of operations in the equation solving procedure.

The boundary integral on S represents natural boundary conditions which must be

imposed on the other boundaries of the domain. The far field boundary C:_ is at a large

distance from the nacelle and is a non-reflecting surface on which a radiation condition

is applied via the boundary integral. This surface is the outer boundary of wave envelope

elements which allow a transition from a fine mesh near the nacelle to a very coarse mesh

in the far field. Most of the nacelle and centre body surfaces are rigid, where the normal

component of acoustic particle velocity vanishes. [n addition, the normal component of

the mean flow velocity also vanishes and the flow tangency condition requires that

V_b,. ,q = 0, eliminating the boundary integral. A portion of the fan duct and centre body

is acoustically treated. On these surfaces an impedance relation is specified, and this can

be introduced through the boundary integral. The acoustic source is also introduced using
the boundary integral. Details of the imposition of natural boundary conditions can be

found in references [1-4].

In the results presented here there is no difference in steady flow density across the shear

layer. The boundary integral on & which arises from considerations of conservation of

acoustic particle displacement across the shear layer therefore vanishes.

8. ACOUSTIC TREATMENT ON DUCT WALLS

In the FEM formulation described here provision has been made for acoustic treatment

on the duct wall and on the centre body. In the present context the acoustic field is

described in terms of an acoustic potential formulation, while the boundary condition

relates pressure and particle velocity. The implementation is described in this section.

A locally reacting acoustic lining material specified by its frequency dependent

impedance or admittance is placed on an interior surface of the duct. The boundary

integral of equation (30) is the mechanism by which the boundary condition imposed by

16
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this acoustic treatment is introduced. On surfaces where acoustic treatment is present the

normal component of mean flow velocity vanishes and the lining boundary integral

simplifies to

(31)

where v.n = VO.n is the normal component of acoustic particle velocity, v. The unit

normal n is directed out of the computational domain and therefore into the acoustic

treatment. The acoustic treatment is described by a local impedance relationship which

connects acoustic pressure to a conceptual wall displacement velocity. [n general, the types

of acoustic treatment of interest are porous and the wall intself does not displace but the

fluid in the pores does. It is the fluid velocity in the porous wall, directed normal to the

wall, which is referred to as wall displacement velocity. The impedance relationship is of
the form

P - z- 1 (32)
c'. A '

where p is the non-dimensional acoustic pressure and v,, is the non-dimensional wall

displacement velocity, directed into the wall. The impedance Z is a prescribed function of

frequency and is non-dimensional with respect to p,_ c,., that is. the dimensional impedance

would be p,:c_Z. A is defined as the non-dimensional acoustic admittance. The relation

between the fluid particle velocity at the wall and the wall velocity is one of continuity

of particle displacement. This yields

v . n = + _ + M,, _ , (33)

where ((x, 8, t) = {(x) e ''_,'-'°_ is the wall displacement normal to the wall mean position.

positive directed into the wall, and related to v,, by v, = g_,/Ot. M,, is the steady flow velocity
at the wall, non-dimensional with respect to c,. The choice of positive or negative sign

depends on whether the acoustic treatment is on the outer or inner wall of an annular duct.
It is assumed that all lined surfaces have negligible curvature in the direction of the duct

axis so that the rigorous description of the flow/surface kinematics [6] is simplified. With

harmonic time dependence,

v . n -_ =---- irlr "4" /i/I,¢ u.. (34)

The relation between acoustic particle velocity and acoustic pressure is

v . n = 4- irlr + M,. Ap. (35)

The relation between acoustic pressure and acoustic velocity potential is provided by the

acoustic Bernoulli equation of equation (19). Equation (35) can be rewritten

17
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The boundary integral becomes

Y ffp Wv.ndS=in ff WAp? dS+
St. St.

WAp_M. =-
C .'¢

Sf.

dS

249

ff IJ" "_ [Mp,dg]dS - i WprMr_-_--sFAp, M,,@ldS. (37)

St. St

The upper and lower sign choice depends on whether the outer or inner wall integral is

considered. The first two integrals on a boundary where acoustic treatment is present are

easy to implement in the finite element formulation because only continuity of acoustic

potential is required. The admittance, A, is assumed piecewise continuous and non-zero

on a portion of the interior surface of the duct. An integration by parts, which is essentially

an application of Stokes' Theorem on the interior surface, is performed to make the last

two integrals compatible with the weak formulation. The integral representing the

boundary condition on interior surfaces can now be written

• = -=-dS
6"X

SL SL SL

(Ap_(_) _ ( Wp, M,,,) dS + rl--'
S L SL

(38)

Equation (38) is in a form which is appropriate for application of standard finite element

techniques to generate "'boundary matrices" which are appended to the element stiffness

matrices of elements whose outer boundaries represent acoustically treated surfaces.

9. AN ABSORBING BAFFLE

A restriction of the present FEM mesh is the presence of the baffle which is used to limit

the computational domain, presumably with little reduction in the quality of the solution.
It is assumed that the baffle is swept back at least 90 _ from the angle of peak radiation,

however, this condition is often violated because it requires a mesh generation change to

accomplish it. In theory the baffle is non-reflecting at large distances from the nacelle since
it is a ray extending from the origin [2]. Near the intersection of the baffle and the nacelle

the baffle is a reflecting surface and its presence has the possibility of contaminating the

solution with spurious reflections. Experience has shown that the baffle has little effect on

the peak lobe in the radiation pattern if the 90 ° rule is adhered to. However, there has
been interest in using the inlet code and aft radiation code to generate the SPL directivity

on the lull 180 ° arc around the engine. This would be accomplished by separately obtaining

the inlet and aft radiation results and then superposing them. Presumably, the peak lobes

fore and aft would be little affected but the region at 900 to the engine axis would be

critically dependent on a legitimate super-position of the inlet and aft results. This is not

possible to achieve because of the baffle, unless it is completely non-reflecting.

An investigation has been made of the possibility of making the baffle at least partially

non-reflecting. This has been done by introducing absorption on the baffle. As in the case
of the nacelle acoustic treatment, this is done through the surface integral on S in
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equation (30). On the baffle it is assumed that the flow is adequately represented by the

uniform Mach number M_ = M_:i. This is true far from the nacelle, and is approximately

true near the nacelle. The acoustic density perturbation is given by equation (17) evaluated

with p, = 1 and c, = 1, assuming that far field steady flow conditions apply on the baffle.

The surface integral on the baffle can then be written as

ff fi [ )lW(prVd) + pl7q_r), n dS -- f_ V¢5 • n - (M_ - n) + M_. Vck dS, (39)

Ss Sp,

where n is the unit normal of the computational domain. The impedance condition on the

baffle surface is defined simply as

Z_
p = -- v.n. (40)

Zb/p_c_ is the non-dimensional impedance and Zh/p¢c__ = I/A, where ,4 is the
non-dimensional admittance. This impedance condition corresponds to no real physical

situation but rather is introduced to provide absorption on a notional boundary through

which there is a steady mean flow. The acoustic Bernoulli equation (19) and the definition

of the acoustic velocity potential

v = _'4' (41)

leads to the conclusion that on the baffle,

/V_b. n = Zb _ + NL: • V¢ . (42)
/

The boundary integral can therefore be written as

S_, Ss

(43)

The boundary integral of equation (43) is applied only in the near field portion of the baffle.

In the wave envelope region the theoretically non-reflecting character of the far field baffle

is left unchanged. The introduction of a locally reacting impedance boundary on the baffle

cannot be expected to produce complete absorption any more than on the wall of a duct.

As will be shown, only a modest absorption can be achieved.

10. POSTPROCESSING

Postprocessing of the acoustic velocity potential solution using the acoustic Bernoulli

equation (19) to obtain acoustic pressure can be carried out in two ways. The approach

which is most efficient computes acoustic pressure at the element nodes using the element

shape functions. The nodal values are then averaged, to account for the fact that

derivatives of potential are not continuous across element boundaries in the FEM

formulation. For sufficiently fine meshes this produces acceptable results. Results presented

in this paper are obtained by this method.
A second method available for postprocessing acoustic velocity potential to obtain

acoustic pressure carries out the calculations at Gauss points in eaca element. The Gauss
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points are known to be points at which optimal accuracy is achieved in the calculation
of derivatives and therefore in calculation of acoustic pressure. The number of Gauss

points is generally less than the number used in the Gauss integration in the formulation
of the element stiffness matrices. The array of solution points on the grid constructed in

this way can then be plotted as contours of equal acoustic pressure or equal sound pressure

level using one of several available commercial plotting packages.

I1. SOLUTION TECHNIQUES

The principal advantage of the FEM formulation described here is that it is

computationally relatively efficient and therefore provides a useful tool for design
calculations. This efficiency decreases as the non-dimensional frequency of the acoustic

source increases, requiring a proportional increase in the mesh density and a

disproportionate increase in computation time (by approximately the square of the ratio
in mesh density). For this reason it is appropriate to give some observations on the linear

equation solving routine which accounts for almost the entire computational time.
Previous fan noise radiation codes [1-4] used a frontal solver due to Irons [8]. This was

extremely efficient in the use of active memory, partly because of considerable data transfer

using direct access I/O in storing and retrieving element stiffness matrices in the
assembly/solution procedure and in retrieving mesh and steady flow data. The resulting

direct access files were subsequently read many times in the various FEM operations and

in postprocessing. This efficiency in storage was offset by a significant cost in execution
time. Nacelle design and source modelling have become the primary uses of the codes and

execution time is a primary issue in a work station environment in which storage has

become a much less limiting factor. Direct access operations are efficient from a

programming standpoint, but inefficient in I/O time. In the version of the radiation code

reported here all direct access I/O has been eliminated in favour of active storage or

sequential I/O. This has resulted in as much as 50% reduction in computation time,

dependent mainly on available fast memory.
Experiments with several popular iterative solution routines show that for the

two-dimensional structure of problems considered here the direct solvers are always faster.

This is consistent with the experience of other investigators [9]. There are indications that
iterative solvers can be faster for similar problems in a three-dimensional geometry. The

choice has been made to retain the modified Irons frontal solver.

12. EXAMPLE CALCULATIONS

The example calculations shown here are obtained on a mesh with about 27 000 degrees
of freedom which is shown in Figures 4 and 5. This mesh becomes inadequate for

non-dimensional frequencies much in excess of r/, = 25, and with the element distribution

shown does better for acoustic radiation toward the sideline (high angular mode number

or high radial mode number). Angular mode order corresponds to the value of m in the

angular Fourier component e -_'_. Radial modes for a specified angular mode are

enumerated beginning with n = 1. The geometry of the aft fan duct is generic, including
an extended centre body and thin fan duct lip, in this case reflexed. The exterior Mach

number is M,, = 0.2 and the jet Mach number at the source plane is _1,/_= 0-5.

The first result shows the success of the penalty method in implementing the condition

of continuity of acoustic pressure across the shear layer. This is most effectively shown at

low frequency because the acoustic field is relatively simple and the discontinuity in

acoustic potential and continuity in acoustic pressure is easy to see. The frequency chosen
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Figure 8. Contours of equal acoustic potential with M_ = 0.5, M0 = 0.2. Reduced frequency _l_= 5.0, input

angular mode m = 2, radial mode n = I, no acoustic treatment. Acoustic potential is discontinuous across the

shear layer.

is r/, = 5 with an angular mode m -= 2 and radial mode n = 1 input with unit pressure

amplitude. The mesh is quite adequate for this low frequency. Figure 8 shows the radiated

field in terms of contours of constant acoustic potential magnitude superimposed on the

computational domain. In this example only five contours are produced to simplify the

plot. The contours range from 15 dB above the maximum level on the outer boundary to

15 dB below. In Figure 8 it is clearly seen that the acoustic potential is discontinuous across

the shear layer. Figure 9 shows similar contours of acoustic pressure and these are seen

to be continuous across the shear layer. The pressure has been obtained by post-processing

the potential field by using equation (19) with FEM interpolation at the nodes. Pressures

thus obtained are averaged at common nodes. It is important to note that nodes across

the shear layer are not common and the pressure across the shear layer is not averaged.

The effectiveness of the penalty method is demonstrated by this example, as is the quality

of the solution at this low fi'equency. Figure 10 shows an additional method of presentation

of the radiation directivity. This represents calculations of sound pressure level on a

circular arc at a radius of 10 duct radii from the origin, normalized to 100 dB maximum.

In this case it emphasizes how broad the principle lobe is near the peak.

The results of Figure 10 can be used to compare the peak radiation angle in the principal

lobe in the far field to predictions obtained using ray theory. A code has been written which

is based on the analysis of Rice and Saule [10] for estimation of the radiation directivity

from an exhaust duct. It is based on an extended analysis since it considers annular ducts

while the original work of Rice and Saule considered only circular ducts. Propagation

angles in the duct are determined from a formal eigenvalue/eigenfunction analysis and the

convection and refraction effects are included as in reference [10]. It is predicted that the

group velocity in the duct at the specified frequency and in the specified mode, rb = 5,

m = 2, n = 1, is at 34-7 °, and the phase vetocity is at 51.2 ° . The peak propagation angle
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Figure 9. Contours of equal acoustic pressure with :14"j= 0.5, Mo = 0.2. Reduced frequency r/, = 5"0, input

angular mode m = 2, radial mode n = 1, no acoustic treatment. Acoustic pressure is continuous across the shear
layer.
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Figure 10. Radiation directivity on a circle of I0 duct radii centred on the computational origin. M, = 0.50,
3't, = 0"20, ,,7,= 5'0. m = 2. n = 1.
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in the far field is estimated to be 49.5". The observed angle of peak radiation in Figures

7 and 8 is around 50 °, but the peak is so broad that it is difficult to pick the angle precisely.

The correlation is excellent, although it must be pointed out that the mesh origin (0.5 duct

radii back from the duct exit plane) is used in defining the directivity in this example. The

Rice/Saule analysis would be based on an origin at the duct exit plane. Because the peak

lobe is so broad there is little point in examining the effect of the origin shift on the stated

comparison. This will be done in the next example which produces a sharper peak lobe.

A higher frequency case with a lower angle of peak radiation is the second example.

In this case the non-dimensional frequency is r/, -- 25 and the modal input is ,7 = 10, n = I.

This is getting close to the limit of resolution for the mesh. Figures 11 and 12 show the

two types of presentation for acoustic pressure. Figure 11 showing contours of constant

SPL, while generally reasonably clean, emphasizes the assertion that the limit of resolution

is dose at hand. The breakdown of" the mesh adequacy always appears in the near to
intermediate field first and is usually related to mesh density in the region between the near

field and the wave envelope region. The number of elements required in the generally radial
direction is critical, and this can be minimized by bringing the wave envelope region in

as close as possible. In the aft radiation case the jet interferes with this. and the wave
envelope region must start far enough out that the .jet is nearly entirely merged with the

exterior flow. Figure 12 shows the polar directivity based on an origin at the exit plane

(non-dimensional x = 0-5) and demonstrates that these far field calculations are generally

better than the near field because of the wave envelope interpolation. This mesh has been

pushed to rh = 35 without complete failure, and has the characteristic that it produces
better results for modes which radiate well to the sideline than for those which radiate at

relatively small angles to the axis as in these examples. This probably results from the

complicated interaction of transmission and reflection of modes at near grazing incidence

70 60

l0

-10.0 -7.5 -5.0 -2.5 2.5 5.0 7.5 10.0 12.5 i5.0

X/A

Figure 1 I. Contours of equal acoustic pressure with M, -- 0.5, Me = 0.2. Reduced frequency r/, = 25.0, input

angular mode m = 10. radial mode n = 1, no acoustic treatment. Acoustic pressure is continuous across the shear

layer.
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Figure 12. Radiation directivity on a circle of I0 duct radii centred on an origin at the fan duct exit plane,

x = 0.5, Mj = 0-50, M0 = 0.20, r/r = 25"0. m = 10, n = 1. --, Case with no acoustic treatment: ---, acoustically
treated case with non-dimensional admittance A = 0-811 + i0.081.
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Figure 13. Radiation directivity on a circle of 10 duct radii centred on an origin at the fan duct exit plane,

v = 0.5, :_L = 0.50, Mo = 0-20. ,1, = 25.0, m = 10, n = I, no acoustic treatment in the duct. --, Case with the

baffle untreated: ---. case with an absorbing boundary on the baffle in the ne:'.r field.
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at the shear layer. The mesh shown in Figures 4 and 5 has proven to be a good generic

structure to work with.

Figure 12 can be used to compare the peak radiation angle in the principal lobe in the
far field to predictions obtained using ray theory. It is predicted that the group velocity

in the duct at the specified frequency and in the specified mode, rb = 25, m = 10. ,7 = 1,

is at 27"4 c, and the phase velocity is at 39-4 °. The peak propagation angle in the far field
is estimated to be 43.9 _. The observed angle of peak radiation in Figure 12 is around 42':

and is adjusted for the origin shift to the exit plane. The correlation with the Rice/Saule

result is good, particularly when it is noted that flow conditions along the shear layer in
the FEM calculations are not uniform, and within the jet region the Mach number is

reduced below M, = 0-5 due to the gradual reduction in radius of the centre body. The

effect can be observed if an average Mach number M, = 0.45 in the jet is used in the

Rice/Saule approximation. The ray prediction would yield 41.9 ° which is about the same

as the FEM prediction which accounts for the non-uniform Mach number in the jet.

An example of the effect of acoustic treatment on the duct walls is also shown in Figure

12. A locally reacting lining with normalized impedance and admittance given by
Z= 1.221-i0.122. A =0.8li +i0-081 is assumed in the high frequency case. The

impedance/admittance is optimum for the rb = 25, M, = 0"5, m = 10, n = l mode.
The outer wall of the fan exhaust duct and the centre body are lined over a length of

0.916 R beginning at 0.074 R forward of the assumed source plane. The attenuated

directivity shown in Figure 12 reveals an attenuation of as much as 5 or 6 dB at polar

angles below the shifted principal lobe which is now at about 45 °. What was once a

relatively well-defined principal lobe is now considerably broadened and beyond 45 * there
are areas in which the SPL is increased, primarily due to filling in of interference notches.

The angle shift of the principal lobe is consistent with the fact that the effect of the acoustic
treatment would be to increase the angle of the phase velocity and group velocity vectors

(lower the cut-off ratio) within the duct.
Finally, Figure 13 is used to show the effect of an attempt to reduce the effects of

reflection from the baffle. A resistive "lining" with non-dimensional admittance

A = 0.8 + i0.0 has been placed on the baffle in the region of conventional elements (the

wave envelope elements in theory should not produce reflections). It is seen that there is

an observable change in SPL at large polar angles (near the baffle) and in the region near

the exhaust axis where the directly radiated field is at low SPL. Since it is not known what

the true reflection free directivity should look like, no conclusion can be drawn other than
the baffle does have an effect on the directivity at large angles, and that the effect is

modestly changed when the baffle is made dissipative. Perhaps of more importance is the

fact that virtually no effect is observed near the principal lobe, suggesting that the baffle

has correctly been assumed to be non-intrusive in this region.
While not entirely definitive, the results shown here suggest that the FEM model of aft

fan radiation captures the known refraction effects of the shear layer very well. Extensive

bench marking of the code against experiments has been carried out by other investigators

[11, 12]. Comparisons of calculations and measurements have been very good.

13. CONCLUSION

A finite element model for acoustic propagation and radiation within and exterior to

the aft fan duct of a high by-pass turbofan engine has been developed. It is based on the

assumption of irrotationat acoustic perturbations on an irrotational steady flow. The jet

is modelled in the steady flow calculations by a potential flow constrained by a shear layer

and allowed to merge with the surrounding flow downstream of the fan duct exit plane.
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The formulation is restricted to axisymmetric geometries and harmonic sources described

by their angular and radial modal content. The condition of acoustic particle displacement

continuity across the shear layer is shown to be satisfied by proper interpretation of a

boundary integral which occurs in the FEM formulation. Continuity of acoustic pressure

is implemented by introducing a penalty method based on the relationship between
acoustic pressure and velocity potential. Example calculations have shown that the

continuity of pressure is accurately enforced. Resolution of accurate solutions at high

non-dimensional frequencies is limited by mesh density which has implications on storage

requirements and execution time. In the present study computations with over 27 000

degrees of freedom have been shown to produce reasonable results up to the reduced

frequency q, = 25. Doubling the frequency would require an approximate doubling of the

density of the mesh.
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Variable order mapped infinite wave envelope elements are developed for
finite-element modelling (FEM) of acoustic radiation in a uniformly moving
medium. These elements can be used as a non-reflecting boundary condition for
computations on an infinite domain in which a radiating body is immersed in
a moving medium which is essentially undisturbed outside of the near field. An
additional result of this study shows that the mapped wave envelope elements
provide a boundary condition equivalent to stiffness, mass, and damping matrices
appended to the inner mesh. By choosing the transition between the standard FEM
mesh and the mapped infinite wave envelope as a surface of constant phase the
mass matrix is caused to vanish identically. This has implications for transient
FEM modelling of acoustic radiation. A demonstration of the characteristics of
mapped infinite wave envelope elements is given in the context of acoustic
radiation from a turbofan inlet for which benchmark results are known.

C 1999 Academic Press.

1. INTRODUCTION

Modelling of acoustic radiation is usually complicated by the requirement that

prediction of the acoustic field is required in some finite subdomain of an infinite

domain. This requires that computations be limited to the subdomain with

a non-reflecting boundary or that the infinite domain be mapped on to a finite

computational domain. In finite element modelling this has led to the study of

a number of forms of infinite elements [1-3], wave envelope elements 1-4, 5], and

mapped infinite wave envelope elements [6-9-]. The several forms of infinite

elements in some sense map the infinite domain to a finite domain. Wave envelope

elements restrict computations to a large but finite domain bounded by

a Sommerfeld radiation condition. The non-reflecting boundary is reached from an

inner standard finite-element domain via large elements in which the shape functions

are augmented to reflect decay with distance from the source and the temporal and

spatial character of outgoing waves. The attributes of infinite elements and wave

envelope elements are combined in mapped infinite wave envelope elements.

0022-460X/99/290665 + 23 $30.00/0 d 1999 Academic Press
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Mapped infinite wave envelope elements have been investigated extensively for
acoustic radiation in a stationary medium. They have certain apparent advantages

as compared to standard wave envelope elements. In the case of harmonic
radiation, the most significant advantage is the possibility of adjusting the order of

the elements to fit the requirements of the problem. Formulation of the elements

reveals the possibility of including within the element shape function an explicit

dependence on inverse powers of the distance from the apparent acoustic source,
consistent with theoretical results {8]. This fact allows the introduction of mapped

infinite wave envelope elements well into what would normally be considered the

acoustic near field, reducing mesh refinement and dimensionality. The shape

functions in mapped infinite wave envelope elements can accommodate nearfield

effects, and this fact can be enhanced by adjusting the order of the interpolation in

the elements to fit the problem requirements. A second advantage in the FEM

formulation using the mapped infinite wave envelope elements is that the
Sommerfeld radiation boundary is infinitely far away and is never explicitly

appended as a natural boundary condition. Astley et al. [9-I also demonstrated the

applicability of mapped infinite wave envelope elements to problems in transient

acoustic radiation, a feature which has not been exploited in standard wave

envelope elements. With an appropriate choice of mesh geometry they show that

mapped infinite wave envelope elements provide a boundary condition which is
well suited for time-marching solutions. The advantages of the mapped infinite

wave envelope elements are not without cost, and the trade-off comes in the form of
increased band width of the discretized field equations that is introduced by high

order mapped elements. This may offset efficiency gains achieved by reduction of
the extent of the computational near field and therefore the standard FEM mesh if
bandwidth-sensitive solvers are used.

The study reported here extends the variable order mapped infinite wave

envelope concept to uniform steady flows, principally in connection with

aeroacoustic problems related to turbofan acoustic radiation. This is a direct

extension of the development of Astley et al. [8, 9]. They present their formulation

in the context of problems in three dimensions in Cartesian co-ordinates. The

application here is in a cylindrical co-ordinate system reduced to two dimensions

by taking advantage of periodicity of the solution in the angular co-ordinate. The

development of the mapped wave envelope elements is completely general and not
restricted to this co-ordinate system. Harmonic radiation is considered explicitly:

however it is shown here that as in the case of a stationary medium, with a judicious

choice of the mesh geometry, the structure of the mapped elements becomes
favorable for transient calculations.

2. AN APPLICATION TO TURBOFAN INLET ACOUSTICS

An important problem of acoustic radiation in a moving medium is available in

the study of the acoustic field of a turbofan inlet. The noise due to turbo-machinery
sources within the inlet is propagated in the inlet and radiated to the (infinite) far

field. Acoustic propagation and radiation occurs in a high-speed potential flow
which is the net effect of flow into the inlet and the forward flight of the inlet. In the
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C.

Infinite element region

CbXK"X " C, Wav:renvel°pe element region

Standard element region

I

X

Figure 1. Computational domain showing genetic geometry of the nacelle and boundaries and

regions used in the finite element, wave envelope, and mapped infinite wave envelope element

formulations.

steady flow far field (perhaps nearer to the inlet than the acoustic far field) acoustic

radiation occurs in a uniformly moving medium. It is required to make

computations to predict the radiated field in a finite subdomain relatively near the

inlet. This has been approached in the past by terminating the computational

domain with a Sommerfeld condition on a boundary reached by the use of wave

envelope elements [5, 10-12]. Here it is intended to investigate the application of

mapped infinite wave envelope elements to obtain closure of the computational
domain.

For turbofan inlet acoustic radiation the nacelle geometry and the steady flow

field (representing flow into the inlet and forward flight) are assumed to be axially
symmetric. The noise source is assumed to be harmonic in time and is decomposed

into its angular modal content, allowing a two-dimensional representation of the

acoustic field in a plane through the nacelle axis of symmetry. The solution domain

is shown in Figure 1. It is the x, r plane in cylindrical co-ordinates. The source

plane is designated by Cy. The source is input on this plane by specifying complex
amplitudes of incident duct modes [5, 10-12]. The nacelle outer surface is C,. On

this boundary, steady flow and acoustic particle velocities have a vanishing normal

component. An artificial baffle Cb formed by a ray from the origin limits the

solution domain. The sweep angle is chosen in such a way that minimal effect on the

acoustic field is created [13]. The domain of computation is divided into two parts.

In an inner region a standard finite-element mesh is used; in the present problem

eight-node serendipity elements with the condition that four to five elements per

wavelength are required. The near field is terminated on a boundary Cr beyond

which farfield elements are used. In previous studies, this region was large but finite

and bounded by the surface C., a circle which represents a constant-phase surface
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for an acoustic source located at the origin. On this boundary, a radiation

condition was specified. Wave envelope elements [5, 10-12] were used in this

region. In the present study, the farfield region is extended to infinity and a single

layer of mapped infinite wave envelope elements is used to provide a reflection-free

boundary on C, and to compute the acoustic field in the far field as required. The

boundary C_ is not part of the solution.

3. FINITE ELEMENT FORMULATION

The geometry of the inlet and steady flow field in and around the inlet is axially

symmetric. The acoustic field is not axially symmetric but is represented as periodic

in a cylindrical co-ordinate system with x being the axis of symmetry, r the

cylindrical radius in a circular cross-section at x = 0, and t) the angular co-ordinate.

Solutions are sought in angular harmonics of a Fourier series enumerated by the

angular mode number m. This reduces the solution domain to a two-dimensional

x, r plane.
The starting point for the formulation of both the steady mean flow and the

acoustic perturbation consists of the inviscid mass and momentum equations and

the energy equation in the form of the isentropic equation of state. The acoustic

field equations are obtained by considering small perturbations on a steady
irrotational mean flow characterized by density Pr and speed of sound cr. This

formulation makes it possible to introduce a steady flow velocity potential 0r and

an acoustic perturbation velocity potential 6. Acoustic perturbations in pressure,

density and velocity potential are harmonic in time with frequency rb and harmonic
in the angular co-ordinate 0 of the form p(x,r)eil'_-"°k p(x,r)e il"'_-"°_

_b(x, r)e i_'t-'_ol. In linearized form, the weak formulation is [-5, 10-12"]

VW.{p_V_+pVckr)-bbl, VpldV= W(p_VO+pVgA)'ndS Ill

The weighting functions are taken as W(x, r, O) = W(x, r)e _''°. Angular harmonics

proportional to e-_,,0 represent the decomposition of the solution periodic in 0 in
a Fourier series. The angular mode number m is a parameter of the solution. The

surface integral is over all surfaces bounding the domain. The unit normal for the

surface integral is out of the domain at the surface in question. The weak
formulation continues with the linearized momentum equation

p = + V'l'r" {2)
c7

which is used to replace p in equation (1). The linearized equation of state,

p=c;p, (31
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is used to produce an alternative form of the momentum equation in terms of

acoustic pressure,

p = - p,(illr_b + V_b,- Vqb). (4)

The acoustic particle velocity and acoustic velocity potential are related according

to

v = v_. (5)

The linearization process also produces the weighted residual formulation for the

steady flow,

f fv;VW.(p_VO_)dV = fsf W(p_V_).ndS, (6)

and the steady flow momentum equation in terms of the speed of sound,

c_ 1 (7-1) Ev4,.v4,, ' := - M_ ], t7)
2

and in terms of the steady flow density,

Pr I1 (7 - I)(V G. VqS,.- M2_)I xj¢v-t'2 (8)

Equations (1)-(8) are in non-dimensional form where 4' is the acoustic potential, 4),
is the local mean flow (reference) potential, p is the acoustic density, Or is the local

mean flow density, p is the acoustic pressure, and c, is the local speed of sound in the

mean flow. All quantities are made non-dimensional by using the density in the far

field, P_o, the speed of sound in the far field, c:o, and a reference length which is

defined as the duct radius at the source plane, R, where acoustic modal amplitudes

are defined. This plane could be the fan plane or the exit guide vane plane, but it is
not restricted to these locations. The acoustic potential is non-dimensional with

respect to c_R, and the acoustic pressure with respect to p,_c_. Lengths are made

non-dimensional with respect to R. Time is scaled with R/c_, leading to the
definition of non-dimensional frequency r/, = coR/c_; (o is the dimensional source

frequency. M:_ = Mo is the Mach number in the far field representing the forward

flight effect.
Equation (6) is the weighted residual formulation for the calculation of the

compressible potential flow within and around the nacelle. Equations (7) and (8)

are subsidiary relations that can be used in an iterative solution which at each stage

uses a density field derived from the previous iteration step. VG, G, Orare required

data for the weighted residual formulation of the acoustic problem. In the results

reported here only the first iteration of this process is used to define the potential
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flOWfield.This is accomplishedby solvingthe incompressibleproblemandthen
computinga variation in steadyflow densityandspeedof sound.

Thesurfaceintegralin equation (1) provides the boundary conditions on the duct

walls, and at the source. The acoustic source is specified by the complex amplitudes

of acoustic duct modes at the source plane. On this plane, the FEM nodal value of

acoustic potential are replaced by the complex amplitudes of the acoustic potential

modes by an eigenfunction expansion. The incident acoustic modal amplitudes are

input and the reflected modal amplitudes are computed as part of the solution.

Details of this procedure are available in [5, 10-12].

A previous study [13] shows that the baffle can be positioned to produce
practically no effect on typical acoustic radiation patterns. Therefore. there is no

contribution from the surface integral on the baffle. In previous studies, the surface

integral provided the mechanism for enforcing the Sommerfeld radiation condition

on C,:. In the present application of mapped wave envelope elements the surface
integral is never explicitly introduced on a far-field boundary because the assumed

form of the solution in the outer region implicitly satisfies the Sommerfield
condition.

In terms of acoustic potential the weak formulation is, from equations (1) and (21,

._c; VW. IT_--(M,.. VW)(Mr" V¢O)+ i;7,.[W(M,.. Vq_)-(M,.- I7W)05 ]
._ c7

- r/; W¢} dV = .tc; W ITdp- M,W(NL" g_) - irbMrWO}'ndS, (9)

where the local non-dimensional steady flow velocity is Mr = IT_r. Equation (9I is

the weak formulation in the entire domain, however in the steady flow far field it
simplifies considerably with the steady flow given by Mr = Moi and Or = 1, c'_= 1.

Furthermore, the surface integral on C:_ has no contribution in the formulation

proposed here because there is no longer any surface on which a Sommerfeld

radiation condition is to be applied. The weak formulation in the steady flow far
field is

VW'VO-M5 = : +irbMo
CX CX

= ¢ -rlFW dV=O.
_x cx

(10)

In the cylindrical co-ordinate system used here, some liberty is taken in defining

the gradient operations as

VW ?W _W im _cb. . ?:6 im=--i+-:--e_+--Weo, Vqb=-=-l-rm-er---¢be,, {11, t2)
{x cr r cx cr r
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and suppressing factors e +-_'° which arise as part of the weighting and trial

functions as explained in connection with equation (1). These factors cancel

throughout all of the products in equations (9) and (10). Equations (11) and (12)

reflect the harmonic angular dependence of q5 and W. The non-dimensional

velocity Mo in equation (10) is the Mach number of the forward flight.

In the steady flow near field, where the flow is non-uniform, equation (9) is

discretized using standard finite-element techniques. Example calculations

presented in this study are based on two-dimensional rectangular isoparametric

serendipity elements with eight nodes.

In the steady flow far field where the flow is essentially uniform, equation (101 can

be discretized using wave envelope elements or by. introducing mapped infinite

wave envelope elements to obtain closure of the computational domain. It is the

formulation in terms of mapped wave envelope elements which is of interest here.

4. THE INFINITE MAPPING

Because of the harmonic dependence on the angle 0 the originally

three-dimensional weak formulation reduces to two spatial co-ordinates x and r.

The x, r plane is shown in Figure 1 where the boundary Cr separates an interior

region in which standard FEM descretization is used from an outer region in which

mapped wave envelope elements are used. The exterior region must be in the steady

flow far field. Figure 2 shows an element in the outer region in the x-r plane of the

cylindrical co-ordinate system. The element is bounded by the surface C_ on which

Standard element region

To infinite

/
in_finite WE elements

Figure ..." Details of the finite/infinite-element interface.
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(-1,-1)

I/

(a}

1,1) / _ -- --

Rays

\

Source Vo , ro

(b)

Figure 3. Geometric details of the mapping between the infinite element and the parent element: la)
parent element, (b) mapped wave envelope {WE) element.

it conform with an element of the conventional mesh. The edges of the element are

straight lines, extending outward more or less radially, though not necessarily from

the axis system origin nor necessarily from a common origin. For the elements used

in this investigation which conform with eight-node serendipity elements in the

conventional mesh (each with three nodes on C,), a third radial line between the

two edges is required. For simplicity, each of the three straight lines will be referred

to as rays. In Figure 1, the outer surface C_: is the notional outer boundary of the

element at infinity. A ray of an element has an apparent origin at a point Xo, ro

which in general can be different for each ray. The element maps to a parent

element in the & q plane, -1 _< _ _< 1, - 1 _< _/_< 1, as shown in Figure 3. The rays

of the element map to the e axis with _1= - l, 0, 1 in the parent element according

to

-_ 1+_ -_,-" 1+_
-- .x: + " r- rl +-----2r, (13, 14)

x 1 -c T-UT-_x-'' l-_ t -_ -'

Since

1 -5 + -- 1, (15)

the mapping is unchanged by an origin shift. Therefore, it can also be used to yield

a mapping relative to the source at Xo, to:

-2c: t+_,
x - xo - f 12-:(xlc - Xo) + ]--7___tx_, - Xo),

{16)
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r - r 0 -

-2_ 1 +5
-3,(rl - ro) + -7----?(r2 - ro).

1--¢ t--C

673

{17)

The node xt, rt is defined by the requirement that the element conform with the

conventional element on the boundary C,. A particularly useful form of the

mapping is obtained if the node at Xe, l"2 is located such that x2 - xo = 2(x_ - xo )
and r2 - 1"o= 2(rl - ro). This makes the mapping simplify to

2{xt - Xo) 2{rl -- ro)
r - ro - {18)

X-Xo= 1 -5 1 -5

The mapping has the properties that _=- 1 maps to X-Xo=Xl-Xo.
r-1"o=rt-ro, _=0 maps to x-xo =2(.'el -Xo), r-ro=2Irx-i"ot, and

= 1 maps to x - Xo = z,r - ro = _.The mapping along a"rav"transforms the

infinite domain in the physical co-ordinates to the domain - 1 _< _ _< 1 in the

parent element. The inverse mapping is

2(xi- Xo) 20"_- to)
- i _ = I (19}

X -- X 0 r -- I"0

It is easily deduced that this mapping along a "ray" also applies for the polar

radius of the point x, r relative to Xo, ro, rp = v/(x- Xo)-'+ (r- to) e, in the
form

2.,/(xt -- Xo)-" + {rl -- to)-" 2rp,
- (20)

rp= I -_ 1 -£

and

?_= 1 -- 2rp./rp. _I)

This form emphasizes the role of the base node Xo, ro as a "'source" for the "'ray" and

the distance rp as the polar distance from the source.
The infinite-element mapping is completed by a conventional mapping on

-1 _< r/_< 1. The element shown in Figure 3 has six nodes numbered as shown.

Nodes 1-4 are corner nodes and nodes 5 and 6 are mid-side nodes on C, and C2

(the locus of the nodes x2, r2). The mapping is of the form

x = [M({, r/)]x, r = [M({, Ilj]r, (22)

where EM(4, _)]is a row vector of six shape functions [_li{_, I]) and x, r are vectors of

nodal values of x, r. With the nodal numbering scheme used in Figure 3 the explicit
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form of theshapefunctionis

MI(_, _) = 0"5;l(rl - L)--
-%5 I +5

M,(_, _?)= 0"5qOl - 1) 1 _'

M3(C', _7)= 05_707 + 1
-2_ L +.:

M._(_, I1) = 0"5_l(Jl + 1) l 5'1-d'

Ms(_, r/) = (1 - _7)(1 ÷ ;7)-- -" - !23)_, Mo(_. _1)= (1 - J?)(1 + ;7)] c1-c

The mapping described here is simply another view of the results presented bv

Asttey et al. [8] specialized to the cylindrical co-ordinate system.
In preparation for development of a mapped infinite wave envelope element for

a uniformly flowing medium it can also be noted that the results of

equations (16)-(21) can be extended to other "'distances" along a ray yielding

a similar mapping. For example

2R1
= ' _ (24)

R \,'(x - Xo) 2 + fl2(r - ro) 1 - 5."

where Rt = v/(xl - Xo)= + fi"(rl - ro) a and fi'- = t - M-" and M is the Mach
number of the uniformly flowing medium. A second useful mapping is

l 2,)_ 125)
,_ = -F[- M(x - Xo) + R] - L - _'

where _Ot = (i/fl2)[ -- .)vl{x1 - Xo) + Rt]. These observations are important to the

extension of the application of the mapped infinite wave envelope element to

acoustic radiation in uniform steady flow.

5. SOURCE SOLUTION IN UNIFORIVl FLOW

The weak formulation of equation (L0) for acoustic radiation in a uniformly

moving medium is consistent with the differential equation

+ M=-- q) O. {26)
CX

A fundamental harmonic source solution for this equation is

e {- irt./3":i - ).Ix - x

(45 = ei,. l . (27)
.v/'X2 + f12 r2
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where fl = ,('l - _ and re = ).2 + ,_, This can be verified by direct substitution

or by noting that the transformation of variables

.,c M
r'= ,', t'=-;-,x (2S/

#

reduces the convected wave equation (26) to the standard wave equation

(?2<b/Cf2 = V20 (29)

in the transformed variables which has a fundamental harmonic source solution

d) = ei_ e"

x� .v 4- r -

_30)

Equation (27) is then obtained replacing the change of variables of equation (28). In

terms of the definitions of equations (24) and (25), the fundamental harmonic

source solution for source location at Xo, ro is

e - i,,,0
0 = ei"'_ -- (31)

R

6. SHAPE FUNCTIONS IN THE INFINITE ELEMENTS

Shape function in the mapped infinite wave envelope elements can be
constructed to display the characteristics of the fundamental source solution at

large distances from the source in the form

e - irbto (x) -,,01)

¢5 = O{x)e -i"° Rl R(x} - P{x)e-i"°e -i"l'_, (32)

where the notation x = (x, r) and ,uIx) = rb0/J(x) - _0_) is used and is similar to the

notation used by Astley et al. [8]. ,u(x) is the phase relative to the surface Cr

separating the infinite-element region from the region of standard FEM

interpolation and _¢,_emphasizes that this phase is dependent on the specific "ray"

on which equation (32) is evaluated. 4st would be a constant for the entire
infinite-element region if Cr is a surface of constant _ (a "constant-phase surface"),

but in general would vary from node to node on C_. The most direct way to make

¢q invariant for the mesh is to construct the mesh so that for all infinite elements

Xo, ro (the "source point") is common and C, is a surface of constant _/,("phase")

relative to the common "source". The mesh used by Eversman et al. [5, 10-12] has

this property (Xo, ro are at the mesh origin) and is used in examples in this
investigation. At large R, equation (32) should have asymptotic behavior in

R consistent with equation (31). The function P(x) should therefore display the
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Rays

\

Apparent
.'t'_ r

SOUZ'CeS

Figure 4. Example of an infinite element with nine x interpolation nodes and six • mapping nodes.
This element produces an asymptotic interpolation in the far field of third order in RI/R.

appropriate asymptotic behavior in R, should be capable of accounting for

nearfield effects, and should interpolate in the standard FEM context in the

r/co-ordinate in the parent element.

In terms of _, r/co-ordinates of the parent element, #(x) and R(x)/R 1, have simple

forms suggested by equations (24) and (25);

1+_ RI 1

_t(_,r/)=_l 1-_' R(_,r/)-2 (1- _) (34, 35)

In equation (34), fit can be a function of r/on the inner boundary of the element

"- 1, interpolated relative to nodal values on C,. The function O(x) in

equation (32) which accounts for nearfietd behavior in the infinite element can be

represented by a standard FEM interpolation

Q(_, r/) = [S(_, r/)]Q, (36)

where Q is a vector of nodal values of Q(x). There are six nodes involved in the

infinite mapping and these can be used as nodes in the interpolation of Q(x). It will

generally be appropriate to use more than the mapping nodes by including extra

nodes along the rays as shown in Figure 4 which demonstrates the introduction of

one extra node midway between the mapping nodes on each ray and suggests

a convenient nodal numbering scheme.

The shape functions for the element shown in Figure 4 with the additional node

midway between the mapping nodes on a given ray are based on nine-node

Lagrangian interpolation with the extra nodes mapped to _ = - ½. In general, P(x)
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is interpolated within an element according to

677

r/) --- EN(¢, (2, (37)

where the shape function Ni(_, r/), the shape function corresponding to node i, is

constructed from the ruth-order Lagrangian shape function for node i, L_(_, _),

according to

Pi(¢, = = +(t - ¢)LT(¢,'7). (38)

Some liberty is taken with notation here: Lf(_, _/) is defined so that p is the order

of interpolation (number of nodes) along the _-axis. Along the _l-axis the order

conforms with the order used in the standard FEM region, which is 3 in the

two-dimensional serendipity elements implemented in the model reported here. It is

interesting to note that N_(_, _) is unity only for nodes with _ = - 1 (the Lagran-

gian interpolation functions have the value unity for all nodes). The vector of nodal

values Q corresponding to the evaluation of Q(x) only corresponds to nodal value
of P(x) for nodes on the surface Cr. Because of this, and because of the phase term

e -_"<x)in equation (32), which is unity only on the surface Cr, in the infinite elements

the solution vector does not correspond to nodal values of acoustic potential at

most of the nodes. The potential can be easily reconstructed by postprocessing.

The form of the shape functions defined by equation (38) can be interpreted in

global co-ordinate by using equation (24) to show that

I - _ = 2(Rt/R), _ ='I - 2(Rt/R). (39)

Equations (38) and (39) suggest that the shape functions in global co-ordinates

along a ray are of the form

Pi(x, r) = 71(Rt/R) + 7;(R1/R) 2 + 73(RI/R) 3 + "'" + 7,(Rt/R)", (40)

n is determined from the order of Lagrangian interpolation. For a p node

interpolation leading to polynomials in _ of degree p - 1 it is determined that n = p.

A similar result was shown in the case of radiation in a stationary medium 1-8].

Reference to "variable order" mapped infinite wave envelope elements relates to

the choice of the order of the Lagrangian interpolation and therefore to the powers

of Rt/R in the asymptotic expansion for the shape function. Conceptually this

could be extended to any order, but as pointed out by Astley et al. ES] there is

a limit imposed by the onset of numerical problems probably related to ill

conditioning if the order is too high.

7. WEIGHT FUNCTIONS IN THE INFINITE ELEMENTS

Astley et al. E8] show that in order for the boundary integral introduced in the

weak formulation to have no contribution on the boundary at infinity it is

necessary for the weighting functions to be functions of {Ri/R{x)} q+ _, with q > t.
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Theweightfunctionsareof theform

(&7 +'= O(x)e i"° e i",l'e'_)-'°'t = D{x)P{x)e i'"° e i"_' (41)
- \t_/xj/

where

D(x) = Rii"Rlx)) q [42)

In the parent element,

D(_, ,7) = (1,'2)<_(1 - 7)" 143)

The weight functions are the complex conjugates of the shape functions multi-

plied by the additional decay term. In the present investigation q = 3. The notation

here has been chosen to correspond to that used by Astley et al. [-8-t to emphasize

the similarity with their development in the case of a stationary medium. Only the
details hidden in the definitions of _0 and R are different.

8. THE WEAK FORMULATION IN THE INFINITE-ELEMENT REGION

The weak formulation of equation (10) for the infinite-element region in which

the steady flow is necessarily uniform is obtained by using equations (32) and (43)
defining the assumed form of solution and the weight functions in the infinite-

element region. The gradient operations on the assumed shape and weighting

functions yield

and

Vc_ = (VP -bliP V_Oe -'"'_

VW = (DVP* + iII_DPVI_L + PVD)e i''';_,

(44)

145)

where the notation

_P. _P
VP = =--I + =-e,

CX cr

im _P (?P im
- -- Peo, VP* = =-- i + =-- e, + -- Pe,_ 146, 47)

r Cx cr l"

is used as in equations {11) and (121) because of the factors e ±ira° which are

suppressed. By using standard finite-element operations, equation (11) can be
formulated at the global level to yield complex element "stiffness" matrices ['_,i]

defined in terms of real mass, stiffness and damping matrices,

[-K,j] = - r/_FM,j] + ir/,[C;j] + [K,.j], (48)

40



MAPPED INFINITE ELEMENTS 679

where

K_j = O (i -M2)-_x _ + = -or cr m'- P'l----+--s-P;
r-

I ,. dD 6P. tD+ P, (1 - M-) Tx 0--_'x_ + ar dr j) d V, (49)

Cis' = v DP, (1 - M: ) =--cx=--'cx+ M --z--cx+ cr-;_ j

-D (1-Mz)_-_x-=--or: =-or=-CX CX cr

-- (1--i_v/2)'_'-'=--+l_/l-7--+'_ -- P/_ dV.
CX CX UX Cr

(5t)

The definitions of the stiffness, mass, and damping matrices of

equations (49)-(51) are implemented at the element level using the infinite mapping

to the parent element. These results reduce to those of Astley et al. [8] when the

medium is stationary and when account is taken of the operations which are

particular to the cylindrical co-ordinate system. It is not difficult to generalize to

a three-dimensional Cartesian co-ordinate system.

9. AN IMPORTANT PROPERTY OF THE MASS MATRIX

The mass matrix of equation (50) vanishes if the surface C, separating the

standard finite-element region from the infinite-element region is a surface of

constant phase for an apparent acoustic source location Xo, ro which is common for

all elements. This is shown by referring to the definition of #{x),

#(x) = ,,(6(x) -,¢'I ), (52)

where

@(x)=(1/fla)[ -M(x-xo)+R], R =V'/(X-Xo)-' °rflZ(r-ro) 2. (53,54)

Since it is stipulated that C_ is a constant phase surface, it follows that t)l is

constant. The apparent source location is the same for all elements, leading to the

conclusion that Xo, ro are constants. It can then be verified that

(1 - Me)(_u/tx) e + (_#/&)2 + 2M(3#/_x) = 1 (55)
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which from equation (501 leads to the result

Mij = O. (56)

This is consistent with the findings of Astley et al. [8] in the case of a stationary

medium when the surface Cr is a sphere, a constant-phase surface in this case. While

of some interest in the time harmonic formulation considered here, the vanishing of

the mass matrix is of central importance when a time-dependent formulation is

implemented in the stationary medium case. It remains to be established that this is

equally important in the case of a uniformly moving medium.

10. TURBOFAN INLET EXAMPLE

Figure 1 shows the generic geometry of a turbofan inlet in an .'c, r plane of

a cylindrical co-ordinate system. The nacelle interior and exterior shape are typical

of realistic nacelles. The acoustic source is on the plane Cf and produces a combi-

nation of radial modes at a specified angular mode m and non-dimensional

frequency r/,. The source strength is specified by the complex mode amplitudes.

This type of source would correspond to rotor alone noise or rotor/exit guide vane

interaction noise. The frequency is determined by the number of blades on the rotor

and the angular mode number by the rotor and exit guide vane blade counts. The

nacelle has a forward velocity specified by the Mach number Mo, which is

represented for the stationary nacelle by a steady flow directed toward the nacelle.

The steady flow into the nacelle is specified by the Mach number Mi, taken to be

uniform on the source plane. The steady flow field inside and outside the nacelle,

computed on the FEM acoustic mesh, provides input data for the FEM acoustic
calculations. This mesh is over refined for the steady flow calculations but this

inefficiency is more than offset by the convenience of input data on a mesh

compatible with the acoustic mesh.

The details of the FEM acoustic computations with the domain closed by

a conventional wave envelope transition region to a Sommerfeld radiation bound-

ary are given in references I-5, 10-12]. In this example the propagation and

radiation problem is formulated with the standard FEM treatment in the steady

flow near field and the domain is closed in the far field by the use of mapped infinite

wave envelope elements. The specific case shown is at a reduced frequency r/, = 25

and angular mode rn = 23 with only the first radial mode incident. Only one radial

mode propagates and it has a cutoff ratio near unity, which indicates that the

peak lobe of the radiation pattern will be at a high angle relative to the nacelle axis.
In this case it is over 60 ° to the nacelle axis for the case of M, = 0.20 and Mo = 0-30.

Figure 5 shows the standard mesh in the region which has been abritrarily declared

as the steady flow near field. The steady flow far field is where the flow is essentially

the Mo = 0"3 uniform flow. The outer boundary of this mesh is the surface C_ and it

is a circle of constant phase for a source at the axis system origin. The infinite-

element region is outside of Cr and not shown. The same inner mesh was used

with the outer region consisting of seven layers of standard wave envelope

elements extending to 10 duct radii ahead of the inlet for the purpose of producing
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Figure 5. The nearfield mesh of standard finite elements bounded by the surface C..
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Figure 6. Standard wave envelope mesh used in finite element/wave envelope element formulation.

comparison results. The outer mesh for this case is shown in Figure 6. The standard

code has been extensively benchmarked by experiment EI2] and by comparison

with available approximate analytical results. Numerical experiments have

shown that for this frequency radiated fields are particularly difficult to model.
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Figure 7. Contours of equal acoustic potential in the entire computational domain for the finite-

element/wave envelope element formulation. External roach number Mo = 0'3, source plane Mach

number M_ = 02, non-dimensional frequency r/, = 25, angular mode number m = 23, first radial

mode.

At high angles to the axis the source is certainly not seen as a simple source on C, as

located in this example. It is reasonable to expect that non-reflecting boundary

behavior based on an asymptotic approximation representing a simple source
would be difficult to achieve.

The results which will be displayed are contours of constant acoustic potential

magni!ude in an x. r plane superposed on the nacelle geometry. Acoustic potential
has been chosen since there is an extra post-processing step to obtain acoustic

pressure which introduces its own potential for error, unrelated to the details of the
reflection free boundary. Post-processing for pressure in the standard FEM region

involve the same operations whether standard wave envelope or mapped infinite

wave envelope elements are used in the outer solution. Figure 7 shows the radiation

pattern generated by using the standard code (wave envelope elements) and

plotting contours of constant acoustic potential in the entire computational do-
main. Eigure 8 shows the same results limited to the region of standard finite

elements, which provides a more detailed way of viewing the reflection free perfor-

mance of the boundary C,. Figure 9 shows the results when mapped infinite wave

envelope elements are used to provide a reflection free boundary. In the case shown

the formulation is based on eight-node Lagrangian interpolation in the mapped

elements in the _ direction (eight nodes). This corresponds to introducing R_/R in

the expansion for asymptotic behavior of the farfield solution up to the eighth

power [refer to equation (40)1. Element integration is based on 9 x 3 Gauss points.

It was found that five-node Lagrangian interpolation (powers of R t/R up to five in

the asymptotic expansion) was not sufficient.

44



MAPPED INFINITE ELEMENTS

4.00

683

\

I I I L i i i L I i i t, i

-3.00 -2.00 -1.00

3.06 S

< )l ,/ j ",60
h >1 / <--' "_

k >>I/<// "':'J '°
+ / ? / ,

+// / ,,',,,,;A.... . +o
'_ (I ; ' " /_' ' "'_ t 5( I"_ <' t' ' _'" '

tit.:' ,,-7, +3((7:".-".... 30

i I i I _1 i i i I I I i i I I I I

1..00 2.00

X/A

20

I0

Figure 8. Contours of equal acoustic potential in the standard finite-element region for the

finite-etementlwave envelope element formulation. External mach number Mo = 0.3, source plane

Mach number Mi = 0.2. non-dimensional frequency r/, = 25, angular mode number m = 23, first
radia] mode.

Figure 7 displaying the entire solution field to the Sommerfeld boundary (10

duct radii of the nacelle axis) suggests significant reflection from the boundary

which appears in the waviness of the contours, particularly at higher angles where

diffraction around the inlet lip is important and where the nacelle surface interferes

with the radiation. The quality of the solution does not improve with the further

mesh refinement, indicating that the mesh is suitable for the frequency. Figure 8

zooms in on the region inside C, and the poor quality of the solution is apparent. In
Figure 9 the same level contours are considerably less ragged, indicating that

reflection has been essentially eliminated. It is of interest to recall that the computa-

tional domain includes the artificial baffle Cb and it appears that it has little effect

on the radiated field, consistent with the results reported in reference [13].

The clear conclusion is that poor quality of the solution when standard wave

envelope elements are used is due to the inability of the wave envelope elements to

provide a completely reflection-free boundary for the complicated source config-

uration and this location of C,. In principle expanding C, should improve the wave

envelope element performance, but this has the obvious implication of directly

increasing the dimensionality (presuming it is required that the mesh refinement is

retained) and the hidden implication of requiring even further mesh refinement due

to the grow'tJ_ in element aspect ratio as C, is expanded.

Variable order mapped infinite wave envelope elements generally will increase

the maximum bandwidth of the mesh (the inner mesh may have eight nodes per
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Figure 9. Contours of equal acoustic potential in the standard finite-element region for the
finite-element/mapped infinite wave envelope element formulation. External roach number Mo = 0"3.
source plane Mach number M_ = 0.2, non-dimensional frequency r/, = 25, angular mode number
m = 23, first radial mode. The order of the interpolation in the infinite elements is eighth power in
RdR.

element and the single infinite element layer has been tested here with as many as 24

nodes per element). In frontal solvers, this tends to slow down the solution even if

the total number of nodes is more or less the same in the mapped elements as in the

standard wave envelope elements. In the example discussed, a frontal solver is used

and tile mapped infinite-element computation have an execution time which is in

a ratio of about 7/5 compared to the standard wave envelope code. This cost is not

unimportant, but must be assessed against the requirements for solution quality. In

this case, the infinite-element results are clearly superior.

The question now arises; how much can the computational domain be reduced

by using the infinite elements to enhance the reflection-free boundary? To partly

address the question, the boundary C, has been reduced to a radius of two duct

radii ahead of the origin. Note in the original mesh of Figure 5 the mesh extends 2.5

duct radii ahead of the origin. In order to maintain approximately the same

mesh refinement, the element count between the "highlight circle" (a circle

passing through the tip of the inlet lip and intersecting the axis near r = 1) has

been reduced from 50 to 35. Figure t0 shows acoustic potential level curves in

the standard element region for the case using mapped wave envelope elements

for closure. The quality of the solution is still substantially superior to that seen in

Figure 8 for which closure was achieved using regular wave envelope elements

(note that the level curves are not the same in Figures 8 and 10 because they are

based on the maximum level on Cr, which differs because Cr differs). The
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Figure 10. Contours of equal acoustic potential in the standard finite-element region for the

finite-element/mapped infinite wave envelope element formulation on a reduced mesh in the standard

element region. External mach number Mo = 0-3, source plane Mack number M_ = 0.2, non-dimen-

sional frequency r/, = 25, angular mode number m = 23, first radial mode. The order of the interpola-

tion in the infinite elements is eighth power in Rn!R.

computation time ratio is now nearly 1/1 and the mapped infinite-element results

are still superior.

l 1. CONCLUSION

It has been shown that with suitable modifications mapped infinite wave envel-

ope elements can be used to provide an effective reflection-free boundary for

acoustic radiation in a uniform steady flow. The adaptation of the elements to this

case is based on the observation that all important "distances" along "rays" map to

the parent element in the infinite mapping in exactly the same way. This permits the
fundamental solution for radiation from a source in uniform flow to be mapped to

the parent element in a form similar to the mapping in the case of a stationary
medium. The fundamental solution forms the basis for an asymptotic expansion in

R-" in the infinite elements, where R is the "convected radius", R 2 = x 2 +/_2r2.

The order of the asymptotic expansion can be chosen to meet the needs of the

problem. Element mapping functions are identical to those previously proposed for

the stationary medium case and the shape functions are of the same form as those in

the stationary medium case with differences only in the details.

Computational examples have been based on acoustic radiation from a turbofan

inlet which has been the subject of several previous investigations in which an FEM

model was developed with the reflection-free closure of the computational domain
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based on standard wave envelope elements. Examples have shown that mapped

infinite wave envelope elements provide a superior reflection-free boundary for

cases in which the standard wave envelope elements generate reflections which

appear in the radiated field. It should be noted that the improved performance may

not be without cost. If relatively high order mapped elements (asymptotic behavior

to R-" where n is relatively large) are required, the maximum front width of the

FEM formulation may be larger than would occur in the standard wave envelope

element formulation. For frontal solvers this may decrease computational efficien-

cy. However, this cost has a substantial benefit in the quality of the solution which

may not be achievable with the standard wave envelope elemnts without expanding

the boundary between standard FEM and the wave envelope element region. In

fact, it has been shown that by taking advantage of the reduction in size of the inner

region (standard element region) which is achievable with mapped infinite elements

it is possible to obtain superior solutions without increasing computation time.
It has been found that the mapped infinite wave envelope element region can be

cast in the form of appended mass, damping and stiffness matrices. With a suitable

choice of the surface which separates the standard FEM region from the infinite-

element region and the restriction that the mapping and shape functions in the

infinite elements are based on a common apparent source location, it has been

shown that the element mass matrices vanishe. This has previously been shown to

be important for transient FEM formulations for radiation in a stationary medium.

This suggests that similar investigations should be carried out in the case of

uniform external flow.
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A REFLECTION FREE BOUNDARY CONDITION FOR

PROPAGATION IN UNIFORM FLOW USING

MAPPED INFINITE WAVE ENVELOPE ELEMENTS
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ABSTRACT

Variable order mapped infinite wave envelope elements are developed for finite element

modeling of acoustic radiation in a uniformly moving medium. These elements are used as a non-

reflecting boundary condition for computations on an infinite domain in which a radiating body

is immersed in a moving medium which is essentially undisturbed outside of the near field. The

mapped elements provide a boundary condition equivalent to element stiffness, mass, and damping

matrices appended to an inner standard FEM mesh. A demonstration of the performance of

mapped elements as influenced by element order is given in the context of acoustic radiation from

a turbofan inlet and exhaust.

INTRODUCTION

FEM modeling of acoustic radiation is usually complicated by the requirement that

prediction of the acoustic field is sought in some finite sub-domain of an infinite domain. This

dictates that computations be limited to the sub-domain with a non-reflecting boundary or that

the infinite domain be mapped to a finite computational domain. The investigation reported here

seeks an improved non-reflecting boundary condition for aeroacoustics problems in which

acoustic radiation in the far field is influenced by steady uniform flow. In order to maintain

compatibility with standard FEM solution procedures (for example frontal solvers or other sparse

matrix/narrow bandwidth methods), only local types of boundary conditions are considered. In

this context boundary conditions which can be categorized as various evolutions of "inYmite

element" methods [1-5] or "wave envelope element" methods [6,7] have been studied. Mapped

infinite wave envelope etements [4,5], which combine the attributes of "infinite" and "wave

envelope" elements, have been chosen in this investigation because of their almost seamless

compatibility with active FEM codes and meshes. Mapped infiNte wave envelope elements limit

computations to a finite domain and provide an approximate reflection free boundary. They have

been investigated extensively for acoustic radiation in a stationary medium [4,5]. Formulation of

the elements reveals the possibility of including within the element shape function an explicit, and

5O



adjustable,dependenceoninversepowersofthedistancefrom anapparentacousticsource.This
allowstheintroductionofmappedinfinitewaveenvelopeelementswell intowhatwouldnormally
beconsideredtheacousticnearfield,reducingmeshrefinementanddimensionality.

Thestudyreportedhereextendsthevariableordermappedinfinitewaveenvelopeelement

concept,asimplementedby Astleyandco-workers[4,5], to steadyuniformflows,principallyin
connectionwith aeroacousticproblemsrelatedto turbofanacousticradiation.Most previously
reportedapplicationsof infinite elementswere implementedin two or threedimensions.The

applicationhereis in a cylindricalcoordinatesystemreducedto two dimensionsby taking
advantageof periodicityof thesolutionin theangularcoordinate.References[3-5], andarecent
contributionby AstleyandHamilton [8], provideexcellentcitationsto thedevelopmentof the
infiniteelementconcept,leadingto thepresentapplication.

AN APPLICATION TO TIfRBOFAN ACOUSTICS

An importantproblemof acousticradiationinamovingmediumis availablein thestudy

of theacousticfield of aturbofaninletandexhaust.Acousticpropagationandradiationoccurs
in ahighspeedpotentialflow whichis theneteffectof flow into (out of) the inlet(exhaust)and
the forward flight of the nacelle.In the steadyflow far field acousticradiationoccursin a
uniformlymoving medium.It is requiredto makecomputationsto predict the radiatedfield
relativelyneartheinlet [6] (exhaust[7]).Thishasbeenapproachedin thepastbyterminatingthe

computationaldomainwith a Sommerfeldconditiononaboundaryreachedbytheuseof wave
envelopeelements.Hereit is intendedto investigatethe applicationof mappedinfinitewave
envelopeelementsto obtainclosureof thecomputationaldomain.

Theproblemiscastherein termsof theturbofaninlet,butanexhaustflow canbemodeled
with modificationsparticular to the shearlayer boundarybetweenthe exhaustjet and the
surroundingmedium[7]. Thegeometryof thenacelleandsteadyflow field in andaroundit is
axiallysymmetric.Theacousticfieldis notaxiallysymmetricbut is representedasperiodicina
cylindricalcoordinatesystemwith x being the axis of symmetry, r the cylindrical radius in a

circular cross section at x = 0, and 0 the angular coordinate. Solutions are sought in angular

harmonics of a Fourier Series enumerated by the angular mode number m . This reduces the

solution domain to a two dimensional x, r plane, shown in Figure 1. The inlet shape in a

t3 = constant plane is defined by the surface C n which includes the center body. The surface Cf

is the plane on which a source is defined, for example the plane of the fan. The surface C b is an

artificial baffle introduced to limit the computational domain. The boundary C' is the outer

boundary of the computational domain.which in principle is infinitely far away, but may be a finite
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surfacewherearadiationconditionis introduced.

Theacousticfield is assumedto beharmonicin timeat non-dimensionalfrequencyrl.
Geometryis non-dimensionalbasedona referencelengthgenerallychosenastheradiusof the
inlet at thesourceplane,R. Acoustic and steady flow variables are non-dimensional based on

reference values of the speed of sound and density of the medium, p., c, generally defined in

the uniform exterior flow. The non-dimensional frequency is rl, = co R / c, with cothe harmonic

source frequency.

In terms of acoustic potential the weak formulation is [3]

where the local non-dimensional steady flow velocity is _ = Vqb and the local non-dimensional

density and speed of sound are p, , c. The surface integral on the right hand side introduces the

noise source on Cf in Figure 1 and a possible impedance boundary condition on C, inside the

inlet. Equation (1) is the weak formulation in the entire domain, however in the steady flow far

field it simplifies considerably with the steady flow given by M, = M 0 i and P, = 1, c = 1.

The weak formulation in the steady flow far field where the flow field is uniform at Mach number M"0

is

=ff w<v, -(Mo2 -_--x + i_]rMo( _ );}'rid*

S

(2)

Equation (2) is obtained from equation (1) by noting that _ is constant and directed along the

x axis. The surface integral on the right is only on the outer boundary C and provides the

possibility of introducing the Sommerfeld condition, if required.

In the steady flow near field, where the flow is non-uniform, equation (1) is discretized

using standard finite element techniques. Example calculations presented in this study are based
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ontwo-dimensionalrectangularisoparametricserendipityelementswith eightnodes.In thesteady
flow far field wheretheflow is essentiallyuniform,equation(2) is discretizedby introducing
mappedinfinitewaveenvelopeelementsto obtain closure of the computational domain.

TIlE INFINITE MAPPING

Only a brief summary of the infinite mapping is given here, as it is given in detail elsewhere

[4]. Equation (1) is discretized using standard FEM techniques in a near field region bounded by

the curve C r shown in Figure 1. In a far field region, bounded by Cr and C, a notional

boundary at infinity, equation (2) is discretized using mapped infinite wave envelope elements.

These elements conform with standard elements in the inner standard FEM region on C,. Figure

2 shows an infinite element in the outer region. The edges of the element are straight lines,

extending outward more or less radially, though not necessarily from the axis system origin nor

necessarily from a common origin. For the elements used in this investigation a third radial line

between the two edges is required. A "ray" of an element has an apparent origin at a point

x0 , r0 which in general can be different for each ray. The element maps to a parent element in the

, r1 plane, -1 _< _ _< 1 , -1 <_r1 <_.1 as shown in Figure 2. The rays ofthe element map'to

the _ axis with r I = - 1 , 0, 1 in the parent element according to

2(x 1 - Xo) 2(r 1 - ro)
x-x 0 - , r-r 0 - (3)

1 -{ I -_

It is easily deduced that this mapping along a "ray" also applies for the polar radius of the point

x,r relative to x 0,r o, re--_/(x-x0) 2 +(r-r0) 2 , in the same form

r = 2_/(x I -Xo) 2 +(r 1 -ro)2 _ 2rpt (4)

This form emphasizes the role of the base node x 0 , r o as a "source" for the "ray" and the

distance r as the polar distance from the source. The infinite element mapping is completed by

a conventional mapping on -1 <_r1 _< 1. It is also noted that the results of equation (4) can be

extended to other "distances" along a ray yielding a similar mapping. For example

R -- - ÷ - 2 -
2R l

(5)

where R:=_(x{-xo)a+_a(rt-ro): and _:=I-M 2 and M is the Mach number
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of theuniformlyflowingmedium. A secondusefulmappingis

= 1 [-M(x-Xo) +R] - 20J1

where qs1= p-: [-M(xl - Xo) + R1]. These observations are important to the extension of the

application of the mapped infinite wave envelope element to acoustic radiation in uniform steady

flow.

The weak formulation of equation (2) for acoustic radiation in a uniformly moving medium

is consistent with the differential equation

a +MZ):4 = (7)

Equation (7) has a fundamental harmonic source solution at non-dimensional frequency _r, for

source location at x 0 , r0 , given by

-_,_

(_ = ei_/ e (8)
R

where q_ and R are defined by equations (5) and (6). Equation (8) can be deduced by

transformation of equation (7) by noting that the transformation of variables

reduces the convected wave equation to the standard wave equation

- v': ¢ (lO)
Ot/2

Equation (10) in the transformed variables has a fundamental harmonic source solution at

frequency rl/r = rb / 13 which is

fir _ _- ,/2

qb : e _ e (II)

/2 + /"/2

Equation (8) is then obtained (within a constant) by replacing the change of variables of equation

(9) and accounting for the source location at x0 , Y0, z0
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SHAPEFUNCTIONS IN THE INFINITE ELEMENTS

Shapefunctionsin themappedelementscanbeconstructedto displaythecharacteristics
of thefundamentalsourcesolutionat largedistancesfrom thesourcein theform

-,n,(_(e) - ,,)

qb = Q(f) e -.,,o RI e = P(f) e -"° e -'¢(_) (12)
R(Z)

where the notation :_ = (x, r) and _1(£) = rtr(t_(£ ) - qI1) is used. g(f) is the phaseretative

to the surface Cr separating the infinite element region from the standard FEM and 0gL

emphasizes that this phase is dependent on the specific "ray" on which equation (12) is evaluated.

_twould be a constant for the entire infinite element region if C_ is a surface of constant _ (a

"constant phase surface"). The most direct way to make _ invariant for the mesh is to construct

the mesh so that for all infinite elements x o , ro (the "source point") is common and C r is a

surface of constant 0g ("phase") relative to the common "source". The mesh used by Danda I_oy

and Eversman [6] has this property (x 0 , r 0 are at the mesh origin) and is used in examples in

this investigation. At large R equation (12) should have asymptotic behavior in R consistent

with equation (8). The function P(:F) should therefore display the appropriate asymptotic

behavior in R, should be capable of accounting for near field effects, and should interpolate in

the standard FEM context in the "q coordinate in the parent element.

In terms of the _ , r I coordinates of the parent element g(:_) and R(:F)/R I have

simple forms suggested by equations (5) and (6):

_(_, n) = ,_ t +____ (17)
I-_

R1 _ i(1 - _) (14)
R(_, _) 2

In equation (12) in the most general case _i can be a function of r I on the inner boundary of

the element _ = -1, interpolated relative to nodal values on C r .

The shape function P, (_, 1"1)corresponding to node i is constructed from the p th order

Lagrangian shape function LiP (_, r I) , according to
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1
C(_,q) =_(_,q) = 7( 1 -_)z,/(_,n) (15)

Some liberty is taken with notation here; L/(_, q)is defined so that p is the order of

interpolation (number of nodes) along the _ axis. Along the r I axis the order conforms with the

order used in the standard FEM region, which is 3 in the two dimensional serendipity elements

implemented in the model reported here.

The form of the shape functions defined by equation (15) can be interpreted in global

coordinates by using equation (I 5) to suggest that the shape functions in global coordinates along

a ray are of the form

n is determined from the order of Lagangian interpolation. For a p node interpolation leading

to polynomials in _ of degree p - 1 it is determined that n = p. A similar result was shown

in the case of radiation in a stationary medium [4]. The mapped elements are variable order

because n can be chosen for the application.

WEIGHT FUNCTIONS IN THE _-FINITE ELEIVIENTS

In order for the boundary integral introduced in the weak formulation to have no

contribution onthe boundary at infinity it is necessary for the weighting functions to be functions

of {R_/R(£)} q<, with q > 1 [4]. The weight functions are of the form

= e in,(,(x) - '1) = D(£) P(£) e .,,o e i_,(x) (17)

where

In the parent element

D(x-') = (is)

q

(1 - _)_ (19)

7
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The weight functionsare the complexconjugatesof the shapefunctions multipliedby the

additionaldecayterm.

THE WEAK FOR_IULATION IN THE ENFINITE ELEMENT REGION

The weak formulation of equation (2) for the infinite element region in which the steady

flow is necessarily uniform is obtained by using equations (12) and (17) defining the assumed form

of solution and the weight functions in the infinite element region. The _adient operations on the

assumed shape and weighting functions yield

Vqb = (VP - irlPVp.)e -'n'_' (20)

and

VW = (DVP" + irlrDPVbt + PVD)e 'n'_ (21)

The superscript (*) denotes the complex conjugate of the operation

VP = P [ + Pr g_ - i m p go, which is defined explicitly for the cylindrical coordinate system and
r

takes into account the angular harmonics depending on m . By using standard finite element

operations equation (2)can be formulated to yield complex element "stiffness" matrices [Z(j ]

defined in terms of real mass, stiffness and damping matrices

[41:<[<1 + [<,J+ (22)

where

K,,=fff {DE(1-M2)ap,a_<ax÷aP,arae,ar+-77P'CIm=
v

_D _D
+P,[(1 -M 2) --' --'- + --=--=.-] }dV

Sx ax ar cr

(23)
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%= fff mP,¢.{1-I(1- M2)(%2.8x(_r)2+ 2MS_tSx]} aT/ (24)
v

c,.= fff {_P,I(I- M2)a,axag.axv<_ + asa,Tlag
y

8V. 8P, ÷MOP, 8_ 8P,D[(1 1 _ 2 _
Ox 8x c?x "-- &]'St_ P

[(1 M 2) 8D Og Mc?D ODOx Ox Ox 8r

(25)

The definitions of the stiffness, mass, and damping matrices of equations (23)-(25) are

implemented at the element level using the infinite mapping to the parent element. These results

reduce to those of reference [4] when the medium is stationary and when account is taken of the

operations which are particular to the cylindrical coordinate system.

The mass matrix of equation (24) vanishes if the surface C, separating the standard finite

element region from the infinite element region is a surface of constant phase for an apparent

acoustic source location x 0 , r 0 which is common for all elements. This is shown by referring to

the definition of g (£),

_(Z) : n,(qJ(e) - qq) (26)

where

and

: 1 [-M(x-
,(Z)

':o) + R] (27)

R = _(X - XD) 2 + _2(r - ro )2 (28)

Since it is stipulated that C is a constant phase surface, it follows that qh is constant The
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apparentsourcelocationis thesamefor allelements,leadingto theconclusionthat
constants.It canthenbeverifiedthat

8g )2 3p )2 ÷ 2M8_ = I

X 0 , r 0 are

(29)

which from equation (24) leads to the result M j : 0 . This is consistent with the findings of

Astley, Macaulay, Coyette, and Cremers [1] in the case of a stationary medium when the surface

C is a sphere, a constant phase surface in this case. While ofsome interest in the time harmonic

formulation considered here, the vanishing of the mass matrix is of central importance when a

time dependent formulation is implemented in the stationary medium case [2]. It remains to be

established that this is equally important in the case of a uniformly moving medium. It should be

noted that the result Mij = 0 assumes that FEM interpolations and integrations are exact. There

is in fact approximation error which is small as verified in calculations reported here. However in

transient calculations this should be considered [5].

TURBOFAN NACELLE EXAMPLES

Computational examples will be given to demonstrate the performance of mapped infinite

wave envelope elements as compared to standard wave envelope elements and in particular the

performance of the new elements as a function of the expansion order will be examined. The

codes which uses standard wave envelope elements [6,7] have a substantial history of

benchmarking against experiment and simple test cases and can comfortably be used as a basis for

evaluating the mapped elements

Figure 1 shows the generic geometry of a turbofan inlet in an x, r plane of a cylindrical

coordinate system. The acoustic source is on the plane @ and produces a combination of radial

modes at a specified angular mode m and non-dimensional frequency fir. The source strength

is specified by complex modal amplitudes [6]. The nacelle has a forward velocity specified by the

Mach number M 0 , which is represented for the stationary nacelle by a steady flow directed

toward the nacelle. The steady flow into the nacelle is specified by the Mach number M_, taken

to be uniform on the source plane. The steady flow field inside and outside the nacelle computed

on the FEM acoustic mesh provides data for the FEM acoustic calculations. Figure 1 indicates

that the computational domain is limited by an artificial baffle C b . Acoustic radiation is highly

directional and it has been shown that the baffle can be oriented to have only minimal influence

on the radiated field. This baffle is introduced to limit the dimensionality of the FEM

discretization.

10
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Thedetailsof theFEM acousticcomputationswith thedomainclosedby aconventional
waveenvelopetransitionregionto a Sommerfeldradiationboundaryaregivenin [6]. In afirst
examplegivenherethepropagationandradiationproblemisformulatedwith astandardFEM
discretizationinthesteadynon-uniformflownearfieldandthedomainiscompletedinthefarfield
bytheuseof standardwaveenvelopeelements.Thespecificcaseshownisatareducedfrequency

rlr = 25andangularmode m -- 23 with only the first radial mode incident. Only one radial mode

propagates and it has a cutoff ratio near unity, which suggests that the peak lobe of the radiation

pattern will be at a high angle relative to the nacelle axis. Steady flow is defined by M o = 0.3 and

M'_ = 0.2. This case could correspond to rotor noise for a mildly supersonic tip speed rotor with

23 blades. The conventional FEM mesh for this example is shown in Figure 3 (as used in the

infinite element implementation). Infinite elements provide the reflection free boundary condition

on the outer boundary. The domain limiting baffle is swept back more than 130 degrees from the

duct axis. The mesh refinement is at close to the limit for the non-dimensional frequency

considered. The proximity of the boundary C r to the nacelle is limited by the extent of the non-

uniform flow field generated by flow around the nacelle.

The results which are displayed are contours of constant acoustic potential magnitude in

an x, r plane superposed on the nacelle geometry. Figure 4, for wave envelope closure of the

computational domain, shows the radiation pattern in terms of contours of constant acoustic

potential magnitude in the acoustic near field, that is, in the standard FEM region. Acoustic

contours show a single lobe of radiation with the highest level on the transition surface C r

corresponding to the closed contour. Considerable evidence of reflection from the wave envelope

element region is revealed by the wavy quality of the iso-potential contours. In this case the

transition surface C (a constant phase surface) intersects the x axis at 2.5 duct radii.. This

distance is apparently insufficient to achieve a good non-reflecting boundary using the wave

envelope elements, which in this case consists of seven layers of elements extending to 10 duct

radii on the x axis where the Sommerfeld condition is imposed. Mesh refinement has virtually

no effect on the quality of the solution. The case depicted with radiation to the sideline is difficult

because of the geometrical complexity of the source.

Figure 5, 6, and 7 show similar results when mapped infinite wave envelope elements of

order 8,9, and 10 (the asymptotic expansion in powers of .Rt/R up to 8, 9, 10) are used to

provide a reflection free boundary. In this case the transition boundary Cr intersects the x axis

at 2.0 duct radii, closer to the nacelle than for the results of Figure 4. The mesh refinement is

approximately the same as used in Figure 4, and the element count is lower. There is

progressively less evidence of reflection (waviness of the contours) as the element order is

increased in successive figures. There is only a modest improvement between the order 9

11
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expansionof Figure 6 and the order 10 expansionof Figure 7. The baffle limiting the

computational domain, as noted in Figure l, accounts for most of the residual evidence of

reflection. Note that the iso-acoustic pressure contours of Figure 4 do not distribute in exactly the

same way as those in Figures 5, 6, and 7 (they normalize on a different boundary). The result is

that there are contours closer to the baffle in the latter cases, and these seem to show a small

effect of the baffle. Timing in all of the cases shown is very nearly equivalent.

The infinite element mapping and shape functions have also been used to generate the

solution in the far field, and this is shown in Figure 8 where acoustic pressure contours are

displayed. Acoustic pressure is obtained by post-processingacoustic potential [6.7] and is less

accurate for a given mesh resolution because post-processing requires the spatial derivative of

potential. In general, it is found that the solution for either potential or pressure is better in the

infinite element region than in the conventional FEM region. This is because the infinite elements

have shape functions which include the spatially harmonic character of the solution. The effect of

reflection from the baffle is clearly shown, however the principal lobe of radiation is essentially

unaffected by the baffle.

As a final example to demonstrate the robustness of the reflection free boundary condition

acoustic radiation from a turbofan exhaust is considered. Figure 9 shows the geometry with a

potential flow jet issuing from the nacelle to represent exhaust flow. The mesh used in this

implementation is shown in Figure 10. Note that there is a region of triangular elements that is

used to work around the sharp trailing edge oft.he duct without unacceptable element distortion.

This has been found to be the most convenient mesh strategy consistent with the goal of keeping

a simple, but optimal node numbering scheme for the frontal solver which is used.

The FEM formulation in the interior region is somewhat more complicated than in the

inlet case, requiring continuity of acoustic pressure and particle displacement across the shear

layer separating the jet from the exterior flow [7]. The length of the jet region forces the inner

region in which standard FEM methods are used to be of much larger extent than in the inlet case.

The case considered here is at non-dimensional frequency "qr = 25, with angular mode

rn = 23 , n = 1 incident. The jet Mach number is Mj ---0.5 and the exterior flow Mach number

is M o = 0.2 . The standard FEM region ends at 3.75 duct radii from the origin (on the axis of

symmetry). The jet shear layer ends at 1.0 duct radii from the axis origin, which corresponds with

the tip of the center body. However, potential flow mixing persists for some considerable distance

beyond this point. Figure 11 shows contours of constant acoustic potential in the near field

generated with standard wave envelope elements providing the reflection free boundary

condition. Figure 12 shows similar contours generated with the domain closed using tenth order

mapped infinite wave envelope elements. The improvement with the mapped infinite elements is

12
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substantial

Someinterestingpropertiesof the solutionare revealedin Figures 11and 12. In the

interior of the duct evidenceis seenof standingwavesalongthe duct wall. This is due to
reflectionattheducttermination.Discontinuityof acousticpotential(requiredbythephysicsof
theproblem),thoughnotgreat,isseenacrosstheshearlayerbetweenthejet andthesurrounding
flow. Thisisdifficult to seedueto thesizeofthefigures,but it canbeobservedmostclearlynear

theductlip. Thecontoursshowncovera rangeof 40dB. Thereisa substantialimprovementin
thequalityof thecontoursgeneratedwith themappedelements.This is in spiteof thefactthat
themeshdensityusedismarginalforthenon-dimensionalfrequencyconsideredandthefactthat
withtheextendedjet theboundaryoftheconventionalFEMregionisverycloseto the"extended"
body.Figure13showsthepost-processedacousticpressuresolutioninboththenearandfarfield.
Theeffectof thebaffleis notedto notsubstantiallyaltertheprincipallobeof radiation.

CONCLUSION

With suitablemodificationsmappedinfinite wave envelopeelementscanbe usedto
provideaneffectivereflectionfreeboundaryfor acousticradiationin auniformsteadyflow. T_ne

fundamental solution for a source in umform flow forms the basis for an asymptotic expansion in

R -q inthe infinite elements, where R is the"convected radius", R 2 = x 2 + [32r 2 . The order

of the asymptotic expansion can be chosen to meet the needs of the problem. Element mapping

functions are identical to those previously proposed for the stationary medium case and the shape

functions are of the same form as those in the stationary medium case with differences only in the

details. Examples show that mapped infinite wave envelope elements provide a superior

reflection free boundary for cases in which standard wave envelope elements generate reflections

which appear in the radiated field. It has been demonstrated in the nacelle inlet case that this

improved reflection flee performance can be achieved on a reduced mesh.
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A NUMERICAL COMPARISON

BETWEEN MULTIPLE-SCALES AND FEM SOLUTION

FOR SOUND PROPAGATION IN LINED FLOW DUCTS
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1 Dept. Mathematics and Computing Science, Eindhoven University of Technology, The Netherlands

2 Dept. Mechanical and Aerospace Engineering and gngr. Mechanics, University of Missouri - Rolla

Abstract

An explicit, analytical, multiple-scales so-

lution for modal sound transmission through
slowly varying ducts with mean flow and acous-

tic lining, is tested against a numerically "ex-

act" finite element solution. The test geometry
taken is representative of a high-bypass turbo

fan aircraft engine, with typical Math numbers

of 0.5-0.7, circumferential mode numbers ra of

10-40, dimensionless wave numbers of 10-50,

and both hard and acoustically treated inlet

walls of impedance Z = 2 - i. Of special inter-

est is the presence of the spinner, which incor-

porates a geometrical complexity which could

previously only be handled by fully numerical

solutions. The results in predicted power atten-

uation loss show in general a very good agree-

ment. The results in iso-pressure contour plots

show good comparison in the cases where scat-

tering into many higher radial modes can occur

easily (high frequency, low angular mode), and

again a very good agreement in the other cases.

Introduction

The calculational complexities of the multi-

ple-scales solution for modal sound transmis-

sion through slowly varying ducts with mean

flow and acoustic lining (presented in [i]), are
no more than for the classical modal solution

for a straight duct. The multiple-scales so-

lution is an approximation utilizing the axial

slope of the duct walls as small parameter. This

slope is for aerodynamical reasons indeed in-

variably small in any aero-engine duct.

Therefore, this multiple-scales solution pro-

vides an interesting alternative in aero-engine

applications, as it both allows for the advan-

tages of the analytical approach (speed of calcu-

lation and relative simplicity of programming),

and variable geometries including spinner and
mean flow variation.

The final approximation error in realistic

geometries, however, is difficult to determine,

except for an order of magnitude estimate say-
ing that it scales on this slope. It is therefore

of interest to directly compare the analytical

approximation with a state of the art fully nu-

merical solution of the same physical model.

This is the subject of the present paper.

As a first step towards exploring the possi-
bilities, a series of tests are carried out, com-

paring the analytical results with results of the

finite element solution, given in [2], of a con>

pressible inviscid isentropic irrotational mean

flow, superimposed by linear acoustic pertur-
bations.

Physical model

We consider a circular symmetrical duct

with a compressible inviscid perfect isentropic
irrotational gas flow, consisting of a mean flow

and acoustic perturbations. To the mean flow

the duct is hard-walled, but for the acoustic

field the duct is lined with an impedance wall.

In view of the adopted aero-engine geometry,

the inner wall (corresponding to the spinner)

will be hardwalled, without lining.

We make dimensionless: spatial dimensions

on a typical duct radius Ro_, densities on a ref-

erence value p_o, velocities on a reference sound

speed c_, time on Roo/c_, pressure on p_c_,

and velocity potential on Rc_c_. Note that

the corresponding reference pressure p= satis-

fies p_c_ = 7P,_, where 7 = 1.4 is the (con-

stant) ratio of specific heats at constant pres-
sure and volume.

Copynght (c} 1999 by S.W. Rienstra. Publistled by the Amencan Institute of Aeronautics and Astronautics,Inc., with permission
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The fluid in the duct is described by

_ + v.(_,>) =0, (la)

>(,>_+ ÷.v,>) + v_ = 0, (lb)

_ = 7, _ = d_ = p.,_ 1 (lc,d)
d>

(with boundary and initial conditions), where

9 is particle velocity,/_ is density,/5 is pressure,

is sound speed (all dimensionless).
Since we assumed the flow to be irrotation-

al, we may introduce a velocity potential e_,

such that 9 = V0, and the above momen-

tum equation may be integrated to a variant

of Bernoulli's equation

0_- + [*1" + - const. (2)7-I

This flow is split up into a stationary mean

flow part, and an acoustic perturbation. This
acoustic part varies harmonically in time with

circular frequency w, and with small amplitude
to allow linearization.

In the usual complex notation we write then

{r = V +re iwt, g = _+ doeiwt,

/) = D+pe i°st, p = P +pc iwt,
= C + ce i_t .

Substitution and linearization yields:

• mean flow field

V.(DV) = 0, (3a)

1 C 2
_lVl 2 + - E (3b)3,-1

C'2 = .,/P/D = D_,-1; (3c)

• acoustic field

iwp + V. (DV0 + pV) = 0, (4a)
P

iw¢ + V.V¢ + _ = 0, (4b)
9

p = C>, (4c)

where E is a constant, and the acoustic pertur-

bation of ? is further ignored. The integration

constant in equation (4b) may be absorbed by
¢. For the mean flow tile duct wall is solid, so

the normal velocity vanishes at the wall. The

subsonic mean flow is determined by conditions

of uniformity upstream, the constant E, and an
axial mass flux rrF.

For _he acoustic part the outer duct wall is

a locally reacting impedance wall with complex

impedance Z. The pertaining boundary condi-
tion is for a point near the wall but still (just)

inside the mean flow. For arbitrary mean flow

along a (smoothly) curved wall, with normal n
directed into the wall, this was given by Myers

[3], eq. 15, as

Geometry

The reference values taken for non-dimen-

sionalization are at the source plane x = 0,

including the outer radius for length scale.
The outer radius Ru and inner radius R1

are described by the following formulas

R2(x) = 1- 0.18453x 'e

e-ll(i-x') _e-il

+0.10158 1 -- e -11 , (6)

RI(x) = max[0, 0.64212

-(0.04777+ 0.98234z'2)1/_'], (7)

where x' = x/L and L = 1.86393 is the length

of the duct; see figure (1)

0.5

-0.5

-1

I i i I

:
_: R 2

l I I I

0 0.5 1 1.5
X ....--_

2

Figure 1: Geometry

The mean flow is selected such that at the

source plane z = 0 the Mach number is equal

to -0.5, and the dimensionless density equal to

1. The corresponding axial Mach number and

dimensionless density variation (based on the

quasi-one dimensional mean flow solution; see

below) is depicted in figure (2}.
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Figure 2: Mach number and density

Multiple scales solution

For the success of the analytical solution it
is essential that the mean flow and the acoustic

field are approximated on the same footing. An

arbitrary, ad-hoc, mean flow field would no_

allow the present explicit solution. So the mean

flow used for the multiple scales solution is not

exactly the same as the one used for the finite

element solution. They are, however, in terms

of approximation of the same level. Therefore,

we give here the mean flow and the acoustic

field together.

The approximation is based on the assump-

tion that geometry and mean flow vary slowly,

i.e. on a length scale much larger than a typ-
ical duct diameter or wave length. This is, of

course, for aerodynamical reasons the case in-

side an aero-engine inlet duct. We introduce

the ratio between a typical diameter and this

length scale as the small parameter c, and re-

write the duct surface (in radial coordinates

(x, r, 0))

,- = R,(.v), ,-= R2(x), x = _. (s)

By rewriting Rt,2 as a function of slow variable

X, rather than z, we have made our formal

assumption of slow variation explicit in a con-

venient and simple way. Although in the final

result _ will play no explicit r61e, a represen-

tative value of e will be necessary for an order

of magnitude estimate of the approximation er-
ror.

By assuming that the mean flow is nearly

uniform with axial variations in X only, we find

that small axial mass variations can only be

balanced by a small radial flow, so

V __ Uo(X)e_: + e_/_(.Y, r)e_

and similarly are P __ Po(X), D _ Do(X), aud

C _ Co(X) to leading order only dependent on
X. It follows that

F

Uo(X) = Do(X)(R_(X) - R_(X))

with Vi, Do, P0 and Co are given by the well

known one dimensional gas flow equations (see

_.g. [ll).
The acoustic field is assumed to be described

by mode-like solutions of the form

¢(x, r, 0;e) = A(X, r; _.) e
(9)

After expanding A = Ao+eA1 +O(e 2) and/_ =

#0 +O(e "_) (any possible/_i can be absorbed by

At), and substitution in equations and bound-

ary conditions, we find for A0 a Bessel-type

equation in r so we obtain the slowly varying
mode

Ao = :e(.v)g_ (_(x),.) + M(XlY., (o.(y)r)
(lO)

where Jm and }_ are the m-th order Bessel

function of the firstand second kind. Radial

eigenva[uea and M/N are determined by the

boundary condition, while

a _"+ la_"= f_2/C_, f_ = ,_ - taUo.

The crux of the solution is the determination

of amplitude N(X), as a function of X. This
is determined by the next order equation for

At. It is, however, not necessary to solve this

complicated equation. A solvability condition

[1] is enough to generate a differential equation
in X for N, which can be solved exactly. The

general solution for the hollow cylinder (Ri =

0, M ___0) is given by

-_- = 2(;'0 1 --_ ¢"a-R_ ]

DoUo . )+--ff-_._ Jm(_,R._)-(11)
/

where Q0 is an integration constant, and

C,2 f22Do_R2/iwZ_, _2 1 (C o -r2, _.. 2= = -- --C01_ /co .
The solution for the annular cylinder is more

complicated, although explicit, and can be

found in [1]

Finite element solution

A numerical model for sound propagation
is based on a finite element discretization of
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the steady flow field equations (3a-3c) and the

acoustic field equations (4a-4c). The weak for-

mulation of equation (3a) for the steady com-

pressible flow in the duct is in terms of the
steady flow velocity potential 6p and steady flow

density D,

ff vw. (DV_) dV = ff W(DV_).ndS.
v s

(t2)

0.5

°; ' 'x-2' _ "

i

i
i

I

iLIl]llll

2

Figure 3: Computational domain FEM

Weighting functions W are from the class
of continuous functions on the volume V of the

duct bounded by the duct surface S, which
includes the duct walls and source and exit

planes. A solution for q_ is sought in the class
of continuous functions. The unit normal is

directed out of the duct. The duct geometry

and the steady flow field are axially symmetric

favoring the introduction of a cylindrical coor-

dinate system with x axis coincident with the

axis of symmetry, r axis in the source plane

at x = 0, and the angular coordinate 0 locat-

ing the r axis in the x = 0 plane (see figure

3 for the computational domain). The steady

flow field is represented in an (x, r)-plane, and
is two-dimensional. A standard finite element

formulation of equation (12) is based on eight

node isoparametric serendipity elements.

Equations (3b) and (3c) are subsidiary re-
lations that are used in an iterative solution

in which at each stage the finite element dis-

cretization of equation (12) is solved with a

density and speed of sound field derived from

the previous iteration step. The boundary in-

tegral on the right hand side, which is a natu-
ral boundary condition, specifies the mass flow

rate on the source plane. A forced boundary

condition setting the level of the potential is

required on the exit plane (figure 3). It is as-
sumed that the source plane and exit plane are

located remotely enough from regions of non-

uniformity in the duct so that at the source and

exit planes the flow velocity is uniform, per-

mitting the natural and forced boundary con-
ditions to be easily implemented. In practical

calculations in the type of duct considered this
turns out not to be restrictive.

The mean flow in the duct given by figure

3, with a uniform Mach number at the source

plane M = -0.5, is directed from right to left

(an inlet flow). The duct shape defined by

equations (6) and (7) begins at the source plane
x = 0 and is extended beyond the nominal ter-

mination used in the analytical development in

a uniform duct to allow the flow field to become

uniform at the exit plane. No extension is used

at the source end and the extension at the exit

end is probably longer than necessary. Vq), C,

D are required data for the FEM solution for

acoustic propagation.
A finite element model for acoustic propa-

gation is based on a weak formulation of equa-

tions (4a-4c). Acoustic perturbations in pres-
sure, density and velocity potential are har-
monic in time with frequency w and harmonic

in the angular coordinate 0 of the form p(x, r),

p(x, r), and 0(z, r) times the complex exponent
e iwt-ira0. The weak formulation [2] is

fff {wv( ,vo+ - iwwp} dV
V

//W(DV¢ + pV_).ndS (13)
d ,J

S

The weighting functions are taken as

W(x, r) eira°. Angular harmonics proportion-
al to e -ira0 represent the decomposition of the

solution periodic in 0 in a Fourier Series. The

angular mode number m is a parameter of the

solution. The surface integral is over all sur-

faces bounding the domain. The unit normal
for the surface integral is out of the domain at

the surface in question. The weak formulation

continues with the linearized momentum equa-

tion (4b) and linearized equation of state (4c),

to rewrite equation (13) in the form

fff   c wv'V -c-L (v.vw)(v.v¢)+
V

iw [W(V.V¢)- (V.VW)O]- w-'W¢} dV

S

-iwVl/Vo} .ndo c (14)

Note that the local steady flow dimensionless

velocity V is equivalent to the reference Mach
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number Mr which in fact is local steady flow

velocity divided by the speed of sound at the

source plane.

The surface integral on the right hand side

of equation (14) is the natural boundary con-

dition. On the duct walls this provides the

boundary condition for either rigid walls (the

integral vanishes) or for a normally reacting lin-

ing with an impedance specified by equation

(5). In the present FEM implementation equa-

tion (5) is simplified by the elimination of the

term involving n.(n. VV) on the right hand

side. In the duct geometry studied here this

term, which depends on the nonuniformity of

the steady flow field, is of little importance in

affecting attenuation (even though it is asymp-

totically small but not negligible, and crucial

in completing the analytical formulation).

Details of the FEM procedure for discretiza-

tion of equation (14), and other references, can

be found in [2]. A discussion of the implemen-

tation of the impedance boundary condition is

available in reference [5].

On the source plane and exit plane the nat-

ural boundary condition is used to introduce

the noise source and non-reflecting boundary
conditions. On these planes the acoustic poten-

tial is recast via an eigenmode expansion such

that the acoustic potential is given in terms of

the complex amplitudes of the right and left

propagating acoustic duct modes appropriate
for the geometry and flow conditions which pre-

vail there [6]. On the source plane, x = 0 in the

present study, right propagating modal ampli-

tudes at the source plane are specified via a

forced boundary condition. Left running (re-

flected} modal amplitudes at the source plane

and right running modal amplitudes at the ex-

it plane are unknown and part of the solu-

tion. Left running modal amplitudes at the

exit plane are forced to vanish, imposing a non-

reflecting boundary condition. Details of the
modal boundary condition are available in ref-

erence [4].
Finite element discretization for acoustic

propagation is carried out on the same grid

with the same element type as used in the steady

flow model. Required data generated in the

steady flow representation is transferred direct-

ly to the acoustic analysis. Mesh density is gov-

erned by the demands of the acoustic problem

and is substantially more refined than would be

required in the steady flow analysis.

The FEM solution proceeds with the com-

putation of the acoustic potential field. Post-

processing by the use of equation (4b) gener-

ates the acoustic pressure field. The solution

also includes reflected modal amplitudes and

transmitted modal amplitudes. Acoustic power
reflection and transmission characteristics are

computed directly from the input modal ampli-

tudes and computed reflected and transmitted

modal amplitudes. Reciprocity characteristics

of the scattering matrices and acoustic power
balances are also monitored as a check of com-

putational accuracy in the case of no acoustic

treatment on the duct walls [7].

Post processed acoustic pressures are repre-

sented on iso-pressure amplitude contour plots

superimposed on the duct geometry. Compari-

son of FEM and multiple scales results is based

on visual comparison of these contours, but

perhaps more importantly on the basis of com-

puted power transmission coefficients.

Differences between Multiple Scales
and FEM Formulations

There are minor differences between the

multiple scales solution and the finite element

model. The field equations (3a)-(3c) and (4a)- "

(4c) are exactly the same in both cases, includ-

ing the convention for non-dimensionalization.
The implementation of the impedance bound-

ary condition in the FEM formulation neglects

the n.(n. VV)-term in equation (5). This is
done principally to simplify the FEM imple-

mentation of this difficult boundary term (it

requires a gradient of the steady flow velocity

which is already the gradient of the steady flow

potential). For a cylindrical duct this term is to

leading order in c equal to _V __ _URx/R. So
it is small, but asymptotically not smaller than

any other effect due to duct variation. Never-
theless, we found as yet no indication that the

effect on attenuation predictions is significant.

The FEM formulation includes the propa-

gation of many modes and therefore scattering

is an integral part of the solution. This is man-
ifested by reflection of the incident mode and
other modes which are not incident as well as

the transmission of modes which are not inci-

dent. The multiple scales method utilizes the

fact that in the smooth parts of the duct any

scattering into other modes is normally neg-

ligible. The propagating sound is still mode-

like, albeit not in the strict sense of self sim-

ilar straight duct modes, but mode-like solu-
tions with slowly varying amplitude and phase.
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At abrupt changes in geometry scattering into

other radial modes may be included (not done

here) by methods like mode-matching.

The FEM solution requires the source to be

represented in terms of input modal amplitudes

for eigenmodes for a duct with hard walls. Tile

source is always located in a section of the duct

which has rigid walls. The net effect is that

there is always a transition from a rigid wall

to an impedance wall at both ends of the duct

in the FEM model. This has implications for

scattering which are not readily quantifiable.

In the multiple-scales analysis the gener-
al solution is built up from a summation over

slowly varying modes. The natural way to test

its validity is therefore to study a single, soft-

wall, mode. In order to generate an equivalent

input in the FEM model it is necessary to rep-

resent the soft wall eigenmode as an eigenmode

expansion of hard wall eigen modes. Since this
sound field distribution, presented to the lined

duct, essentially "fits" directly into one soft-

wall mode, only little reflection at the source

plane is to be expected. A single mode multiple-
scales analysis is therefore simulated by a mul-

tiple mode FEM solution.

Finally, it is noted that the FEM model re-

quires conditions at the source and exit planes

which give rise to reflected modal amplitudes

and to the reflection free termination (or speci-

fied or computed reflection characteristics).

These conditions do not play an immediate role

in the analytical solution, with left and right

running waves already given explicitly. Al-

though inherent in any practical application,
we have not tried to model these conditions in

the analytical part of the present tests in or-
der not to obscure the comparison and to re-

strict the sound field to that of a single, right-

running, mode.
It is not possible to make FEM and multiple-

scales models exactly equivalent, nor should

it be, since the multiple-scales solution is an

approximation based on well documented as-

sumptions. It is a goal of the numerical com-

parisons to be given here to investigate how

successfully the multiple-scales solution repre-
sents the more exact FEM model.

Results

The cases considered are grouped as the fol-

lowing 4 series of iso-pressure contour plots:
the first radial mode of

fig.

fig.

fig.

fig.

is input under

fig.

fig.

fig.

fig.

2,

3.

4.

5.

4 m =10, w =I0,

5 m= 10, _= 16,

6 m= 10, _=50,

? m=40, w=50,

the following conditions:

a hard wall, no flow,

b hard wall, flow,

c soft wall, no flow,

d soft wall flow.

The left column of the figures is the numerical

FEM solution, the right column the analyti-

cal MS (multiple scales) solution. "Soft wall"

denotes a wall impedance Z = 2 - i. "Flow"
denotes a me.an flow with Mach number -0.5 at

the source plane. "First radial mode" denotes

in general the mode with smallest real part of

radial eigenvalue a. For the soft walls the pre-

dicted attenuation (10 log of ratio of acoustic

power through source and inlet plane) is giv-

en in the caption of the figures. For the hard

walls the attenuation is either zero (mode is cut

on) or infinite (mode is cut-off and reflection is

negligible).

The selected cases do not show turning point.

behaviour (hard-wall cut-on, cut-off transition).

The possible differences between FEM and

MS are due to the following errors or modelling

discrepancies.

1. The approximation error of O(c-'). For this

we need an estimate ofe. Suitable is a typical
d

value of 87R2 = ed--_R2 = O(s). From for-
mula (6) it appears that R_ varies between

-0.12 and 0.12 along [0,1.75], but increases

to 0.4 in the lip region [1.75,L]. If we take

e = 0.1, the estimated approximation error

is a few percent.
Small but inherent reflection in FEM at inlet

plane and lip region.

Not exactly the same source in soft wall cas-

es, since FEM uses a source defined by an ex-

pansion in a finite number (15) of hard wall

modes, a small distance 1(yd-6L) away from
the lined section.

Slightly different impedance definition in flow
cases,

Slightly different mean flow. In MS the mean

flow field is approximated to the same level
as the acoustic field.

For highly attenuated or only cut-off modes

(m = 10, _ = 10) of fig. 4a-d, the agreement is

almost perfect. None of the above errors seem
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to play a role.

For the series (m = 10, w = 16) of fig. 5,

with I (no flow) or 2 (flow) modes cut-on, the

agreement is good in the iso-contour plots, and

almost perfect in attenuation. Some wiggles

are visible in fig. 5b what is probably error type

1, due to interference with the other cut-on ra-

dial modes.

The high frequency series (m = 10, _ = 50)

of fig. 6 has very low acoustic pressure val-

ues near the duct axis, and many radial modes

cut on (at source plane, no flow: 9, flow: 11).

We see strong interference with these higher

modes. The most important region near the

outer wall, however, is in very good agreement,

and for no flow the attenuation agrees exact-

ly. With flow the 1st and 2nd radial soft wall

modes happen to be rather close to each oth-

er, and a residual second mode (due to error

3) leads to a slightly (0.5 dB) different attenu-

ation.

The high m, high frequency (m = 40, w =

50) series of fig. 7 has 2 (no flow) and 3 (flow)

radial modes cut on, giving rise to some wiggles

in figs. 7a,b. Effects due to error 3 are probably

visible in fig. 7d, although the predicted attenu-

ation agrees very well. The (academic!) differ-

ence in attenuation of fig. 7c (195 and 210 dB)

is no numerical round-off error, but due to the

fact that the plotted mode is least attenuated

at the inlet but not at the source plane. Residu-

al modes due to error 3 are likely to dominate in

the FEM solution near the source plane, lead-

ing to a different attenuation.

Conclusions

Any selection of test cases is necessarily lim-

ited. It would have been easy to create a more

or a less favourable comparison, by making a

suitable selection of geometry and parameters.

This is not done here. We have defined the test

runs entirely on the basis of their relevance to

turbo fan engine inlet duct applications, and

we have not skipped unfavourable cases after-

wards. The only restriction we made was that

no cut-on/off transition in the hard walled duct

be present. This phenomenon is not yet includ-

ed in the analytical solution, while at the same

time, of course, it is absent in any lined duct.

So considering the fact that the cases are

likely to be a representative cross section of re-

ality, we think the conclusion is justified that

the MS and FEM solutions compare favourably,

both in iso-pressure contours and in predicted

attenuation. Principle differences are related

to scattering at inlet plane, and to input mode

synthesis. The best results are obtained with

lining (reducing importance of reflection) and

when the modal structure permits few or no

cut-on scattered modes. The attenuation dif-

fers in general no more than a few tenths of a

dB.

Tile correlation shows that MS is definitely

useful in applications for assessing liner perfor-

mance in realistic geometries. Both extending

the theory, and further comparison with FEM,

for example with an MS implementation that

includes a complete modal spectrum and open

end reflectiori, is therefore to be recommended.
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Figure 6a: m = 10, .o = 50, hard wall, no flow
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Figure 6b: m = 10, a_ = 50, hard wall, flow
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Figure 6d: m = 10, as = 50, soft wall, flow;

art. 1.49 dB (FEM), 0.92 dB (MS)
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Figure 7c: m = 40, w = 50, soft wall, no flow;
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Figure 7d: m = 40, a = 50, soft wall flow;

art. 28.4 dB (FEM), 28.6 dB (MS)
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ABSTRACT

In order to achieve satisfactory results

with finite element formulations for pressure in a
propagating acoustic field with relatively high

non-dimensional frequencies, the prob[em of
ever-diminishing mesh size must be resolved.

The convected potential formulation describing
an acoustic field introduces problems not

addressed in the simple Helmholtz equation.
Post-processing to calculate pressure is necessary

and this leads to additional dimensionality
problems beyond those encountered in modeling

acoustic potential due to an inaccuracy appearing
in the calculation of the potential derivatives.

This oscillating erroneous behavior is rooted in
the element shape functions and modifications

have been made, using elements of higher order,
to contain this discrepancy enough to where

post-processing does not add significantly to the
dimensionality problem. In so doing, satisfactory

pressure models for non-dimensional frequencies
up to 100 in a variable area circular duct with a

wide range of subsonic Mach numbers and
angular modes can be calculated in a reasonable
s/zed domain.

INTRODUCTION

Application of the finite element
method (FEM) in modeling acoustic propagation

leads to problems of large dimensionalities when
high frequencies are considered. A mesh of

about 10 nodes per wavelength is considered
adequate resolution in order to achieve

acceptable results in modeling propagating
waves. Simply reducing the mesh size is

certainly an option. However, it becomes quickly
impractical and computationatly expensive.

Several approaches have been studied in order to

deal with the dimensionality problem.
One common approach is to lower the

number of nodes required per wavelength. In

* Graduate Student, Member AIAA.

Curators' Prot'essor, Associate Fello_ ,,\/AA.

Copyright _ 2000 by Waiter Eversman. Published by

American Institute of Aeronauncs and ,\stronautics. inc. wilh

permission.

acoustic radiation to the far field the

development of infinite elements, which
incorporates spatially harmonic radiation into the

shape functions, has greatly reduced the far field
dimensionality problem _3. The earliest approach

was based on exponential decays with radial
distance J. Later, and with more success, mapped

inf'mite elements were developed based on the
asymptotic behavior of the far field and the

correct spherical or cylindrical decay was
incorporated-'. BumetP extended this method to

use prolate spheroidal coordinates, allowing it to
be more flexible in modeling objects with large
aspect ratios, i.e. reducing the extent of th_

conventional mesh in the near field, thus

reducing the overall mesh. A variation of the
infinite element method is that of the wave

envelope element method which restricts the
computations to a large but finite domain _-7.
Astley 4 incorporated the use of complex

conjugates weighting as opposed to Galerkin

weighting, reducing the integrals to simpler
forms, thus enabling Gauss-Legendre

integration. The penalty was a non-symmetric
coefficient matrix, although with less frequency
dependence. This method was also capable of

reducing the reach of the conventional element
domain while extending into flow problems _'7.

Mapped infinite wave envelope elements have
attributes of both infinite and wave envelope

elements. This tectmique has recently been
extended to include three-dimensional elements

of variable order s, sperhoidal elements of

variable order to improve modeling around a
slender or flat object 9, and a non-reflective

boundary with uniform steady flow L°. The

mapped infinite wave envelope elements can be
used in what is normally considered the acoustic
near field because of their adjustable

interpolation order, thus reducing mesh

refinement and dimensionatity to a greater extent

than with previous approaches. Chadwick and
Bettes _ modeled the phase p and the wave

envelope A rather than the potential d_ (the

potential of a traveling wave is expressed as
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_=Ae_p)for finitewaveenvelopeelementsand
wereabletouseacoarsermeshin thenearfield.
Thiswaslaterextendedto infiniteetements'2.
The penaltyhoweveris that an iteration
procedureis necessary. All of the previously

mentioned approaches are well suited in an
exterior region. [nside a duct, however, the

complexity of the acoustic field makes for
limated success. In fact, Astley and Eversman '3

suggested the use of traditional wave envelope
elements inside a duct before they were used in

the far field, but it was effective in only special
circumstances.

The most traditional FEM approach in
dealing with short waves is to let the mesh size

decrease while the piecewise polynomials of

degree p are constant. This is known as the h-
version, while the p-version leaves a fixed mesh
and allows p to increase. These have been

combined and extended into the adaptive hp-
version. For a detailed background and method

of implementation see references [14] and [15].
In the field of acoustics this method has recently

been used in modeling the Helmholtz equation

for non-dimensional frequencies up to 30"_ _6

Although a significant decrease in total degrees
of freedom is achievable because of its adaptive

behavior, it is computationally expensive due to
the iteration procedure, despite exponential

convergence. The nodal density is still needed at
about 10 nodes per wavelength for reasonable
errors.

The incorporation of wavelike behavior
into the elements has not been limited to infinite

and wave-envelope elements. Babu_ka and

Melenk introduced the partition of unity method
(PUM) based on introducing prior knowledge
about the governing differential equation into

non-polynomial functions used for the solution
approximation, rather than traditional (mapped)
polynomials iT. These special functions

approximate well the exact solution and the wave

direction at each node is implicitly deterrmned. It
is advantageous to use a set of plane wave

solutions of the homogenized Helmholtz
equation as the local function basis.

Computational cost is still a problem compared

to non-iterative approaches. In reference [I7] it
is also suggested that PUM is suited well for a

mesh-less formulation. More recently, an
element-free one-dimensional Galerkin method

was applied to the Helmholtz equation 18.
The combination of PUN[ and a

standard FEM has been called the generalized
finite element method and seems to offer a

significant reduction in dimensionality versus

standard FEM without requiring re-meshing Kg.In

a recent presentation Bettes and Laghrooche
extended this idea to the Helmholtz short wave

problem z°. An approach based on a somewhat
similar idea as that behind the PUM was that of

residual-free bubble functions :_. It added these

functions to the piecewise linear polynomials

and used subspaces where these functions
satisfied the differential equation strongly and

solved analytically for them. This was applied to
the Helmhoitz equation for relatively low non-

dimensional frequencies (<10). Franca and
Macedo extended this to a more flexible two

level meth_)d 2-'. They used a submesh defined in
each element interior and solved the differential

equation numerically for the bubble functions,

allowing for irregular meshes.
It is important to note that the methods

used in reference [14] to [22] have all been

applied when solving the Helmholtz equation.
The introduction of a moving medium in the

acoustic field has lead to a different approach.

The FEM model used in this paper is potential
based and post-processes to find the acoustig

pressure. This convected potential formulation
introduces problems not encountered in working

with the Helmoltz equation. Among them is the
consideration of an effective wavelength, due to
flow velocity and while the potential solution

abide by the expected nodes per wavelength ratio
of 10 to 12, the calculation of pressure which

involves the derivative of the potential solution

apparently does not. The nodal density required
by the post-processing adds greatly to the

dimensionality of the problem. An investigation
into the cause of the shortcoming and possible

simple modifications for this model was
conducted. The variation in the order of the

polynomials was performed for both a quasi-one
dimensional and an axially symmetric system.
The results were considered in a ducted acoustic

field with non-dimensional frequencies up to 100

and a wide range of propagating modes. It
involved large area variations and most of the

subsonic flow range. The behavior of this high

frequency complex acoustic field was studied
and the post-processing problem was greatly

diminished while a possible method for an
extension to improve the dimensionality of the

overall system was considered.

FORMULATON OF PROBLEM

The problem in question is the

propagating acoustic field in a moving medium
inside a circular non-uniform duct. A typical

geometry of such a duct is seen in figurel. The
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noisesourceisat theleftendandthemedium
mayflow in eitherdirectionwith leftto right
consideredpositivedirection.Theacousticfield
descriptionis basedona convectivepotential
formulationobtainedby consideringunsteady
acousticperturbationsonasteadycompressible
potentialflow. Eversman et. at. previously

developed a FEM model for the turbofan engine
inlet radiation problemS'< This FEM model is

basically the same without the exterior region but

with the capability of handling compressible
flow. An extensive description of the

formulations and the computational scheme can
be found in reference [6] and the references

therein. However, a summary of the major
features of the approach will follow.

Figure 1. Non-dimensional computational
domain

It is assumed that the moving medium is

non-viscous and that all processes are isentropic.
The field equations for both the potential flow
and the acoustic perturbations in non-
dimensional forms are derived from the non-

dimensional continuity, momentum, and energy

equations, the latter in the form of the isentropic
equation of state:

0p
-- + v. (pY) = o (1)
&

+(;.v); = _!vp (2)
_t p

1
p :_pr (3)

Y

p, p, and _ are non-dimensional pressure,

density, and velocity, respectively. 7 is the ratio

of specific heats. The non-dimensional speed of
sound is

c 2 = YP = pZ-I (4)
P

Pr is the reference density and cr is the

reference speed of sound and are taken as their

respective values at the source plane. The

reference length R is defined as the duct radius
at this plane. Pressure has been made non-

dimensional by prc_, density by p,., velocities

and speed of sound by cr, velocity potential by

crR, and time by R/c,.. The introduction of

velocity potential and the linearization of the

conservation equations to the first order in
acoustic perturbation yields

V.(p. V_o) =0 (5)

for steady mean flow, and

cP + v.(poVq)+ pV¢o)=O (6)
Ot

for the acoustic perturbations, where ¢0 and Po

are the mean flow potential and density,

respectively, and ¢_ and p are acoustic

potential and density. The mean flow and
acoustic densities are determined by

1

Po =I l - (y -l---_)V2 _b° ' V¢°)1_27-1 (7)

c_ L _t

where c_ = p_-_ is the local speed of sound. The

acoustic pressure is related to the acoustic

potential by

A standard finite element Galerkin

approximation is used to solve the problem. The
computational domain is modeled using either

quasi-one-dimensional or axially symmetric
formulations with mesh elements of different

order. The solution is achieved through three

steps:
• The time invm'iant mean compressible flow

problem. Equation (5) is solved in the
domain in an iterative procedure for the flow

potential.

• Unifolvn duct eigenvalue problem. A
uniform duct eigenvalue problem is solved

on the fan face in order to express the fan
and exit face boundary conditions in terms

of duct eigenfunctions.

• Acoustic propagation problem. Equation (6)
is solved for the acoustic potential, using

equation (8). The solution is desired in the
case of a harmonic source on the source

plane with time and angular dependence

given by e '<"'r-_"°) where q_ is the non-

dimensional input frequency ( r]_ = mR / c_,

co is the input frequency) and m is the

angular mode number.
The acoustic pressure distribution in the duct is
calculated through post processing of the

acoustic potential solution, using equation (9).
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Figure 2a. Pressure contours using quadratic elements for r/r = 25, M_ =. 1, m = I, and N/X = 11.1

0 3

Figure 2b. Pressure contours using cubic elements

As far as dimensionality is concerned the

difficulties of this model Iie within this process.
For high values of input frequency the nodal

density of the mesh necessary to achieve

acceptable pressure results has to significantly
exceed 10 nodes per wavelength. An attempt to

reduce the overall dimensionality problem can
not be made until this ratio applies to satisfactory
pressure calculations.

RESULTS AND DISCUSSION
In this section some numerical results

are given to demonstrate the improvements made
in reducing dimensionality of the domain. The

solution of the acoustic radiation problem yields

the acoustic velocity potential at the nodes of the
mesh. The solution that yields the acoustic

pressure is obtained from equation (9) as

;, +(v< (10)
Pressure at a node is calculated from the

elements sharing that node and the value of

pressure is obtained as the average of the nodal

pressure found in each element. An improvement

in results can be obtained by evaluating acoustic
pressure at Gauss points inside the elements

rather than at nodes and plot these, as is done in
reference [6]. However, this will not totally
elinnnate the inaccuracies in the results. As seen

in equation (10) pressure calculations require
derivatives of acoustic potential because of the

6

for 77r = 25, Mi =. 1, m = 1, and N/X = 11.3

moving medium. This is the source of the
difficulties of this model.

Figure 2a shows pressure distribution
for a relatively simple acoustic field with non-

dimensional frequency of 25. This mesh has a
nodal density of about 11 nodes per wavelength,

N/X, and 9021 degrees of freedom (DOF) and is
more than adequate for finding satisfactory

potential, _b. In fact only a nodal density of 9

nodes per wavelength is needed in certain

regions due to the tlow effect. The flow in this
case varies from Mach. l to. 13 and the effective

wavelength _ is given according to X, =(t+M)K
As seen, even at these very low Mach numbers

the improper Joehavior of pressure is present.

This behavior is actually so strong that the total
number of DOF needs to be doubled before

significant improvement can be seen. The root of
this problem lies in the calculations of the

potential derivatives, or the acoustic velocities,
and the use of quadratic serendipity elements. In

this case the acoustic propagation and the flow

are predominately axial. This makes g_/& the

more significant part of _7_ in equation (10)

when calculating pressure. The derivative at each

node is calculated from the average based on
every derivative calculated at that node, thus

assuring continuity. But since quadratic

serendipity elements are used eg/& is linear in

4
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x andquadraticin r while(7'¢/21" is quadratic in

x and linear in r. When studying the acoustic

velocity components separately the error appears
to lie predorrunately in the axial direction of

8_/&. The error of c3_/&'in the radial

direction, which is linear in r, does not affect the

pressure for one main reason. 0¢ / &" is of small

magnitude and is multiplied with the relatively
small flow velocity component in the r-

direction. In addition, for this case de/& in the

axial direction behaves much more smoothing

than c3¢/&- in radial direction. 2¢/& in the

radial direction experiences more reflection from
the outside wall and because of the harmonic

appearance of the error, it is possible that there is
some cancellation of the error because of this

reflection since it does not appear as strong in the

radial c_O/& - as in the axial O_/_.v, both of

which are linear in r and x, respectively. The

error is of such a nature that it often appears
more distinct in the simpler regions, not those

heavily exposed to reflection and scattering. The
order of the velocity components in different

directions is at the core of the unacceptable
behavior. A change to Lagrangian elements will
have no effect on the order of the acoustic

velocity terms, only on the number of terms

involved. The increase in the appearance of error
in certain regions, especially along the outside

wall, occurs because the magnitude ofSqS/&:

increases here. The error will decrease with

increased nodal density.
The same acoustic field was modeled in

figure 2b using cubic serendipity elements and
almost the identical nodes per wavelength value.

Again the mesh is adequate for finding
acceptable acoustic potential. In this case there
are only 7066 DOF due to the use of cubic

serendipity elements rather than quadratic ones.

There are no visible traces in the pressure
contours of the error encountered previously.

However, studying the acoustic velocity
components there are small tendencies for this

erroneous oscillating behavior, despite having

terms of at least quadratic order. It is clear that
the error can not be completely eliminated using

cubic elements. This will, however, greatly
contain it in numerous cases. The effect of the

error on the pressure increases as the flow speed
increases. This can be seen in figure 3a where

Mach number ranges from .5 to .73. With the

effective wavelength N, being more than one and
a half of k. the value of 11. l for N/X. is far more

than needed for satisfactory potential results. Yet

pressure is far from acceptable in the quadratic
case. It is important to note again that the error

occurs in the catcuIation of the acoustic velocity

and that an erroneous V_ is amplified byVO0.

not in the acoustic potential calculation (which is

satisfactory for N/N, greater than 10). The reason
the error appears greater as M increases is the

product term involving V_bo in equation (9). The

magnitude of the error in the acoustic velocity is
not affected by flow velocity. There are similar
tendencies for cubic elements, however not

noticeable as seen in figure 3b. Exactly how
much impact the presence of a moving medium

in an acoustic field has on the modeling becomes
clear when the flow is directed into the acoustic

propagation. The effect of flow in the opposite
direction makes it necessary to increase the nodal

density to a N/X of 17 in order to account for the
effective wavelength adjustment. The flow speed

ranges from-.3 to -.4 and this means N/N, is
about 10.5. Reference [6] addressed this in

considering turbofan in.let problems and it is
clear from figure 4a how much more sensitive

the problem becomes. The degrees of freedom
necessary in the quadratic case for satisfactory

potential results have increased to 22541, yet the
pressure contours are far from acceptable. The

cubic model has to require 16354 DOF in order
to have 17 nodes per wavelength and to handle

the potential, but this is also enough to handle

pressure.
[n cases with higher angular mode

numbers it is generally easier to model acoustic

pressure, as seen comparing figures 3a and 5a, in
which the only difference is higher angular mode
number in the latter case. The mode number

increase appears to cause a decrease in the

magnitude of c_¢/8x over large regions of the

domain, except along the outside wall. It

basically shifts the acoustic velocity and pressure
gradients away from the x-axis. It also causes an

increase in o_¢,/8r in the radial direction relative

to 8¢/o2v. This will not increase the appearance

of the error overall since &C,/&" in the radial

direction is multiplied by the radial flow velocity

component which is still small.
The case involving larger contraction of

the cross-sectional area causes the most complex

acoustic field. This will greatly increase both the

radial flow component and the radial acoustical

velocity component (8_/8r in the radial

direction increases more than that in the axial

5
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Figure 3a. Pressure contours using quadratic elements for r/r = 25, Mi = .5, m = I, and N/X = 1 l. 1
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Figure 3b. Pressure contours using cubic elements for r/r = 25, M i = .5, m = 1, and N/X = 11.3
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Figure 4a. Pressure contours using quadratic elements for r/r = 25, Mi = -.3, m = 1, and N/X = 17

direction), as well as reflection and scattering.

The flow speed ranges from. 1 to .24, indicating
an N/X of 9 would be adequate for potential

calculations. This time the magnitudes of _¢_/_r

are significant, yet because the behavior across

the duct of 0_/_r is influenced by reflection

1 2 3 4 5 5 7 8

0.083 0.248 0413 0.579 0.744 0909 t 075 1.240

o

0 3 6

Figure 4b. Pressure contours using cubic elements for rb = 25, Mi = -.3, m = 1, and N/X = 17

and scatter the error might be subjected to some

cancellations. _¢)/_x in the axial direction is

still a problem, but now the reflection and scatter
also make an impact in this direction for most of

the domain. More significant, it is no longer

6
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Figure 5a. Pressure contours using quadratic elements for r/_ = 25, Mi --- .5, m = 5, and N/X = 11. I
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Figure 5b. Pressure contours using cubic elements for rlr = 25, Mi = .5, m = 5, and N/X = 11.3
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Figure 6a. Pressure contours using quadratic elements for q_ = 25, Mi =. 1, m = 1, and N/X = I 1.1
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Figure 6b. Pressure contours using cubic elements for q,. = 25, M_ =. 1, m = 1, and N/X = 11.3

totally dominating equation (10) and thus the

error it carries becomes diluted. The quadratic

model is capabIe of modeling this case and there
are not any significant differences when
comparing the quadratic and cubic models

(figures 6a and b). The area contraction will

cause large increases in pressure magnitudes.

Note that this is not why the error seems
unnoticeable. In a smooth field larger acoustic

velocity values will lead to the larger errors. If

the same contour values as in previous figures
were used, the error would still not be noticeable

in this case.
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Theoveralltendenciesseenin figures
2a to 6b staythesameas the frequencyis
increased.Figure7 givesan oveDqewof the
necessarynodaldensityforacceptablepressure
resultsforboththequasi-onedimensionaland
cylindricalcases.Theseresultsmodelthe
acousticalfield in a duct with a .9 area
contractionratio,inletMachnumberof .1,and
anangularmodeof 1(, asin figures2aandb).
Thetolerancelevel for what can be viewed

acceptable has been more stringent in these cases
for the sake of consistency. The computational

time for two-dimensional quadratic and cubic
elements beyond non-dimensional frequencies of

50 and I00, respectively, becomes excessive.
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Figure 7. Nodal density vs. non-dimensional
frequency

The most important result is that with
elements of cubic order the error can be

contained enough to the point that the accuracy

of the potential solution becomes the deciding
factor in determining nodal density, not the post-

processed calculation of pressure. Note that the
benefit of going to even higher order elements,
as is done in the one-dimensional case, is

questionable. Very little seems to be gained.

While overall the cubic serendipity elements
perform better than quadratic serendipity

elements in modeling pressure there are also

some possible problems in its performance.
Although nodal density might be the same in

both cubic and quadratic models, the cubic

elements cover a larger domain and therefore
there is a larger gradient within this element,

causing derivatives of greater magnitude to be
calculated. A decrease in element size can

correct the problem, however this will erase the
gains made in reducing dimensionality.

The use of cubic elements, although not
totally eliminating the errors occurring in the

post-processing, has contained those

inadequacies enough to where certain high
frequency models that previously were

impractical to study due to dimensionality

problems, now can be calculated in reasonable
time. The first set of problems involves the
acoustic field in a duct at a non-dimensional

frequency of 50 and the impact of the area
contraction ratio changing from .9 to .5. 7"lie
flow velocity ranges from Mach number of.1 to
.13 in a, from .1 to .24 in b, and from .1 to .5 in

c, with an angular mode of 1. This model is seen

in figures 8a to c and requires 27631 DOF.
To model an acoustic field with a non-

dimensional frequency of 100, angular modes
ranging from 1 to 20, and the flow velocity,

varying from Mach .3 to .4 in figures 9a and b
and Mach .25 to .9 in figures 10a and b, a

domain of 91906 DOF is needed. Figures 9a and
b compares angular modes. The same for figures

10a and b, but with larger area contractions, thus
higher flow velocities. Figures 9a and 10a shows

the effect of changing the cross-sectionaI area.
With the same degrees of freedom and a flow

speed ranging from Mach .3 to .4, but in the
opposite direction, the model is limited to

satisfactory results for non-dimensional
frequencies up to 70. The computer time for this

model using an HP Visualize C200 with a
specfloat FP95 of 21.4 was about 30 to 40

minutes for the incompressible flow code and
about 100 minutes for the acoustic propagation

code. Each case in figures 8a to e took only
about 15 minutes for both flow and propagation
calculations combined.

CONCLUSION

It is questionable if cubic elements will
be suitable for models having a non-dimensional

frequency much beyond 100. It. is apparent they

can give acceptable results for nodal densities
not much greater than those required for

potential calculations. However, the tendencies
of the oscillating errors are still present and this

probably needs to be resolved before an attempt
can be made at going below the 10 nodes per

wavelength required for satisfactory results in

the potential formulation. Since this error seems
to be a function of both nodal density and the

order of the shape functions it calls for further
study into the use of various shape functions and

other types of elements.
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Figure 8a. Pressure contours for r/r= 50, Mi = .1, m = 1, and N/X = l 1.3
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Figure 8b. Pressure contours for r/r= 50, Mi = .1, m = 1, and N/X = 11.3
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Figure $c. Pressure contours for _Tr= 50, l'_Vii = .i, m = 1, and N/X = t 1.3
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Figure 9a. Pressure contours for r/r= 100, Mi = .3, m = 1, and N/X = 10.4
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Figure 9b. Pressure contours for rb = 100, NI_ = .3, m = 20, and N/X = 10.4
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Figure 10a. Pressure contours for rb = 100, Mi = .25, m = 1, and N/X= 10.4
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Figure 10b. Pressure contours for r?r= 100, Mi = .25, m = 10, and N/X = t0.4
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THE BOUNDARY CONDITION AT AN IMPEDANCE WALL

1N A NONUNIFORM DUCT WITH POTENTIAL MEAN FLOW
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ABSTRACT

The boundary condition at an impedance wall in a duct with a steady mean flow requirLng

the specification of the normal component of acoustic particle velocity is examined. It is found

that when implemented in the weak formulation of the finite element method it can be

considerably simplified. The boundary condition would appear to require data which includes the

tangential derivative of the tangential mean flow velocity, the normal derivative of the normal

component of mean flow velocity, and the derivatives of the mean flow density and the boundary

admittance along the boundary. It is shown that with suitable rearrangement the normal and

tangential velocity derivatives can be eliminated, as can the derivatives of the mean flow density

and admittance. The boundary condition becomes only slightly more complicated than the

corresponding boundary condition when mean flow is absent, and is no more difficult to

implement, requiring only local values of tangential mean flow velocity, density, and admittance

which are already required as data for the weak formulation of the field equation.

INTRODUCTION

Figure 1 shows the geometry of a typical non-uniform duct section. The duct is of non-

uniform cross section with walls S which in general include an acoustically absorbing section
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imbeddedin anotherwiseacousticallyrigidwall.Absorptioncharacteristicsof theboundaryare

givenin termsof theadmittanceA for a locally reacting liner. The duct in Figure 1 is depicted

as axially symmetric, however the results obtained here do not depend on such an idealization.

The duct geometry includes the definition of a unit normal ff directed out of the fluid region,

and therefore into the duct wall. The notional displacement of the duct wall, normal to the wall,

is given by 4 which is a function of location on the wall. In harmonic motion with time

iqrt

dependence e the admittance relates this displacement.to the acoustic pressure according

to

irl r _ = Ap (1)

When this admittance relation is applied to acoustic propagation in ducts with steady

mean flow it produces what appears to be a very difficult boundary condition at the admittance

wall. Myers [1] derived the correct boundary condition which relates the normal component of

acoustic particle velocity to the particle displacement in non-viscous flow for harmonic acoustic

perturbations at frequency fir as

Here Y- ff is the normal component of acoustic particle velocity at the wall and V is the
r

tangential mean flow velocity at the wall. Propagation in non-uniform ducts is normally modeled

under the assumption that the mean flow and acoustic perturbation are defined by a steady flow

potential such that _ = V'qbr , and by an acoustic potential such that _ = Vdp and an acoustic

momentum equation

p = - p_Eiq_qb + _.V_] (3)

2
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A combination of equations (1), (2), and (3) produces a single boundary condition in terms of

acoustic potential which is difficult to implement in numerical schemes. It is found that data

required to model the boundary condition includes the derivative of the impedance and mean

flow density along the boundary. In addition, and much more of a problem, is the requirement

for the tangential derivative of the tangential component of mean flow and the normal derivative

of the normal component of mean flow. These present particular difficulties because the mean

flow data in finite element propagation models is generally obtained from a potential formulation

for the steady flow and the required derivatives of velocity require second derivatives of the

potential.

The boundary condition described by equations (1), (2), and (3) has been implemented

in a finite element scheme by Eversman and Okunbor [2]. They used an approximation, argued

to be adequate for ducts with changes in cross section which are relatively small, which ignores

the term requiring the normal derivative of the normal component of mean flow velocity, ahd

additionally ignores the effect of duct wall curvature on the calculation of the rates of change of

quantities along the wall. The approximation for the tangential derivative of the tangential

component of mean flow velocity is retained. The computation of this derivative is not

considered to be very accurate. None of these approximations are thought to be significant for

attenuation calculations in the geometries considered.

Rienstra [3] has approached the modeling of acoustic propagation in ducts with slowly

varying cross section by a perturbation scheme, and the analysis procedure requires the full

modeling of the boundary condition. However, because his procedure is analytic the

implementation of the boundary condition presents no difficulty and the issues which arise in a

numerical model are not present.

The motivation for the present investigation is the requirement to verify a reciprocity

relationship which exists for acoustic propagation in non-uniform ducts with mean flow and

absorbing linings. In order to show reciprocity no approximation in the boundary condition is

permissible. Numerical experiments conducted with the approximate model of the boundary

condition described in [2] suggest that reciprocity is nearly satisfied, but one is not fully
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convinced that the small discrepancies are in the approximate model or in the reciprocity

principle. The following work derives a model of the boundary condition for the FEM

formulation which is exact within the FEM formalism, is easy to implement, and will replace

the approximation in [2]. Work to be subsequently reported will show that the new boundary

condition results in a numerical substantiation of the reciprocity principle [4,5].

FINITE ELEMENT FORMULATION FOR DUCT PROPAGATION

Application of finite element modeling to acoustic propagation in nonuniform ducts with

steady mean potential flow has been previously reported [2 ]. A formulation in terms of acoustic

potential is used to reduce the field equations to a single scalar variable. In this investigation the

geometry of the duct and steady flow field is axially symmetric. The acoustic field is not axially

symmetric but is represented as azimuthally periodic in a cylindrical coordinate system with" x

being the axis ofsylnmetry, r the cylindrical radius in a circular cross section at x = 0, and 0

the angular coordinate. Solutions axe sought in angular harmonics of a Fourier Series in 0

enumerated by the angular mode number m . This reduces the solution domain to a two

dimensional x, r plane, shown in Figure 1. The duct shape in a 0 = constant plane shows the

surface S which defines the duct shape and could include an inner surface for an annular duct.

Part of S includes S , which is a locally reacting acoustic treatment.
9V

The acoustic field is assumed to be harmonic in time at non-dimensional frequency qr"

Geometry is non-dimensional based on a reference length generally chosen as the radius of the

inlet at the source plane, R. Acoustic and steady flow variables are non-dimensional based on

reference values of the speed of sound and density of the medium, Po,, c, generally defined at

the plane of the acoustic source. The non-dimensional frequency is q, = co R / ca , with cothe

harmonic source frequency.

Reference [2] discusses in detail the finite element modeling of acoustic propagation in

and near ducts carrying mean flow. The field equations for continuity and momentum and the

isentropic equation of state are used in a weighted residual statement to obtain an integral

4

102



formulation which is then written in discrete form using standard FEM procedures. In terms of

acoustic potential the weak formulation is

t"

(4)

where the local non-dimensionaI steady flow velocity is _ = Vdo, , with do, the non-

dimensional steady flow velocity potential. The local non-dimensional density and speed of

sound are p, , c. The surface integral on the right hand side introduces the noise source and

termination conditions on S O or S L and a possible impedance boundary condition on S inside

the duct. In the present investigation it is the impedance boundary condition which is of interest

on S , a portion of S. In equation (4), the weighted residuals statement, W represents an

arbitrary weighting function selected from the class of continuous functions. In this weak

formulation the approximation to the solution dO is also chosen from the class of continuous

functions

At a duct wall the mean flow is tangential to the wall and I2 • r7 = 0 causing the

boundary integral (the contribution to the right hand side o f equation (1) related to the impedance

condition) to become

Sw

With the Myers boundary condition [ 1 ] and with

integral of equation (5) on S becomes

X7dO/t7 = 0 on the duct wall surface Sw, the

5
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The following vector identities (suggested in a similar context by Moehring [6]) are introduced

(with account taken of the special circumstances of the present problem):

V'pI?_ =0

p W_,_.(,_.v)_ = ,_.(,_.v)p_" _

,_.v×(,_xp W;er) : v.p _v_g - ,_'(,>v)n w_g

With the use of the identities of equations (7), equation (6) can then be reformulated as

Sw S

(6)

Following the development of Moehring [6], the last integral can be written as a line integral on
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the boundary F of the surface S W by using Stokes' Theorem. The boundary curve 1"should

enclose the portion of S on which there is a non-zero admittance, but should be located where

the admittance vanishes, as shown in Figure 2. F consists of closed curves F t and F 2

circumscribed on the duct wall at either end of the duct, chosen to be outside the region in which

the lining of finite length has non-zero admittance, that is, in the regions in which the duct wall

is rigid. There is of course a portion of lP which runs along the duct wall between r I and

1"2 to complete the closed curve of Stokes' Theorem, but.this curve is traversed twice, once

in each direction, and has no net contribution. To make use of Stokes' Theorem it is required that

the acoustic field and the wall displacement be continuous on S. Hence, if the acoustic

treatment is of limited length imbedded in an otherwise rigid wall duct, the transition from rind

wall to admittance wall, as well as the variation of admittance along the treated wail, must be

continuous. If this condition is met, Stokes' Theorem can be cast in the form

f f v×C ×p,wCES>dS=f (_×PrW_Vr)'d_ + f (_×_rW¢gr)'d_

S F1 E2

(7)

The integral on the surface Sw vanishes if the line integrals vanish. On a hard walI the line

integrals vanish because the boundary displacement vanishes. This means that if the condition

for the use of Stokes' Theorem is met, then the integral of equation (6) is

At a wall of admittance A equations (1) and (2) are used to replace the wall displacement

and the pressure with velocity potential dO. The result is the new weighted residual boundary

integral on the duct surface S
w
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The weighted residual form of the boundary condition of equation (9) is a considerable

simplification of the boundary condition which would result by a direct use of equations (1), (2)

and (3). In the latter case it would be found that the derivatives of the admittance A and the

steady flow density Pr are required. In addition the tangent!al derivative of the component of

mean flow velocity tangential to the wall and the normal derivative of the normal component of

mean flow velocity at the wall are required. Current implementations of the FEM formulation

from which the steady potential flow field is obtained are not well suited for the accurate

determination of these second derivatives of velocity potential. The modified version of the

boundary condition neither requires data which is not directly determined from the potential flow

model nor requires any operations which are not required in the discretization of the field

equations (let_ hand side of equation (4)).

The restriction that the admittance is continuous on the duct wall is related to modeling

difficulties addressed by other authors. Moehring [6 ] has noted that in the acoustic potential

formulation for discontinuous admittance variation there is no clear condition to be imposed on

the acoustic field or wall displacement at the discontinuity. Rebel and Ronneberger [7 ] have

shown that the condition of admittance discontinuity and the assumption of potential flow at the

wall (no boundary layer) causes a problem with the underlying physics of the flow related to the

absence of shear stresses. In this analysis these issues have been eliminated by requiring that the

admittance vary continuously. In practical terms, this is accomplished by making

"discontinuities" rapid, but continuous, variations (easily done by an appropriate definition of

the local admittance). One suspects that numerically this may be a non-issue, because in the weak

FEM formulation the role of discontinuities is reduced.
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AN ALTERNATE APPROACH

An alternate approach to the simplified boundary condition is available which produces

a boundary condition useful for numerical models which are not based on the weighted residuals

formulation. The Myers boundary condition of equation (4) can be written

p F'_7 = i'rl.p. ( + p. _'_( - p.(tT.(@.V) (10)

The steady flow continuity equation

V.p,V,. = 0 (11)

is used to establish that

pr_'V_" : V'pr_ _ (12)

It Can also be shown that since on the duct wall g" V = 0,
r

Pr(E'(E'T)_ =E'(@.V)p,(_ (13)

With these results it can be shown that

on
(14)

and

0

9

(15)
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Directions tangential and normal to the duct wall at the wall surface are denoted by z, n .

V V are the tangential and normal components of the steady flow velocity. At the duct wall
r ' Y n

V vanishes. Therefore, the boundary condition on the duct wall is

o( (16)

This form of the boundary condition, not in weighted residual form, could be used, for example,

in a finite difference formulation. With ( replaced by equation (1) and p replaced by equation

(3), it is found that derivatives along the wall of mean flow density, wall admittance, and mean

flow velocity are required, however the normal derivative of the normal flow velocity component

is not required. Equation (16) can be used in the weighted residual formulation to reproduce

equation (9), with the same restrictions.

CONCLUSION

The Myers acoustic boundary condition at an admittance wall in a non-uniform duct

carrying potential mean flow [1] has been restructured using identities of vector calculus to

obtain a form well suited for finite element predictions of propagation. If applied without

simplification the boundary condition would require data on the spatial derivative along the wall

of mean flow density, the tangential spatial derivative of the tangential mean flow velocity at the

wall, the normal spatial derivative of the normal mean flow velocity at the wall, and the spatial

derivative along the wall of the admittance. After simplification only local values of density,

tangential flow velocity and admittance are required. The normal component of mean flow

velocity is eliminated completely. Implementation of the boundary condition is easily

accomplished in finite element models.

An alternate approach has been used to simplify the Myers boundary condition in a form

useful for numerical modeling not based on the weighted residuals approach of finite element

10
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analysis. The normal derivative of the normal mean flow velocity component at the wall is

eliminated, however derivatives along the wall of mean flow density and velocity and wall

admittance are retained.

The net effect of the boundary condition on prediction of attenuation in ducts in FEM

models has been found to be minor when compared to a former approximation introduced for

computational efficiency (the new exact formulation is found to be even more computationally

simple). For calculations made to validate acoustic reciprocity, the exact form of the boundary

condition introduced here is essential, and it is found that predicted reciprocity relationships are

accurately verified [4,5].
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ABSTRACT

A reverse flow theorem for acoustic propagation in compressible potential flow has been

obtained directly from the field equations without recourse to energy conservation arguments. A

reciprocity theorem for the scattering matrix for propagation of acoustic modes in a duct with

either acoustically rigid wails or acoustically absorbing wails followsl It is found that for a source

at a specific end of the duct, suitably scaled reflection matrices in direct and reverse flow have a

reciprocal relationship. Scaled transmission matrices obtained for direct flow and reversed flow

with simultaneous switching of source location from one end to the other also have a reciprocal

relationship. Numerical verification of the reciprocal relationships is given in a companion

paper.

INTRODUCTION

The general principle of acoustic reciprocity in a medium at rest is well known and is

derived in [1] by direct manipulation of the field equations in the case of harmonic time

dependence. By essentially using this starting point, Eversman [2] has demonstrated and

numerically verified reciprocaI properties of the scattering matrix for acoustic modes incident,

reflected, and transmitted in a non-uniform duct in the absence of mean flow. Moehring [3], by

using an approach based on energy conservation, has arrived at the same result when differences

in definitions of the normalization of acoustic modes are considered. Moehring's approach

depends on a suitable definition of acoustic energy density and acoustic energy flux, which are
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well known in the case of propagation in a stationary medium. Since the result of Moehring [3]

depends on the normal derivative of the acoustic energy flux vanishing on the walls of the duct, it

would appear to exclude dissipative wails. However, the classical result [1] concludes that

reciprocal relations still hold provided the duct walls have a locally reacting impedance model

(whether dissipative or not) where for harmonic disturbances acoustic particle velocity is

proportional to acoustic pressure. Reciprocity based on energy conservation is more restrictive

than necessary.

An appropriate definition of acoustic energy and energy flux also exists for propagation

in a compressible potential flow [4]. On this basis, Moehring [3] extended his observations on

properties of the scattering matrix to include non-uniform ducts with rigid walls and potential

mean flow with the result that the reciprocal properties also depend on flow reversal. Godin [5]

has studied extensively issues of acoustic energy, acoustic reciprocity, and flow reversal

theorems in a highly generalized sense directly from the field equations. He has not specifically

addressed the simpler case of propagation in non-uniform ducts with compressible irrotational

flow, citing Moehring [3] as having demonstrated reverse flow reciprocity in this case [6].

Godin's citations to the literature can be consulted for an extensive survey of the field.

Here the goal is to approach the acoustic reciprocity problem in a compressible potential

flow in non-uniform ducts directly from the field equations in much the same way as the classical

formulation in the case of a stationary medium I1 ]. Furthermore, it is intended to show that

reciprocity holds for a finite length dissipative lining imbedded in an other,vise rigid wall. A

foundation for such a formulation in the case of uniform flows was _ven by Flax [7,8] in

connection with unsteady lifting surface theory. The application to potential flows in non-

uniform ducts given here yields a reciprocity relationship (perhaps more appropriately referred to

as a flow reversal theorem [5]) which is in terms of acoustic potential and acoustic density

perturbations on an irrotational compressible mean flow. It also can be given entirely in terms of

acoustic potential perturbations. The reverse flow reciprocity formulation which is obtained does

not begin with an energy conservation law and leads to a form similar to Moehring [3]. This

investigation is not restricted to a duct with rigid walls. The reverse flow reciprocity theorem is

then used to establish reciprocal properties of the scattering matrix for propagation of acoustic
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modes in a non- uniform duct with acoustically absorbing walls.

In the present paper the theoretical frame work is established for the reciprocity (flow

reversal) relationship, and it is specialized for examining the reciprocal relations which exist

between duct modes propagating in compressible mean flow. In a companion paper [9], the

results derived here are substantiated by numerical experiments based on a finite element

simulation using a new implementation of the boundary condition introduced by the presence of

acoustic treatment, the subject of a second companion paper [10].

ACOUSTIC PROPAGATION IN A COMPRESSIBLE POTENTIAL FLOW

An extensive discussion of both linear and non-linear formulations for acoustic

propagation in potential flows has been given by Campos [11]. His work includes a number of

citations to previous work and is the basis for contributions directed mainly toward analytic or

semi-analytic solutions for propagation in ducts (see for example [12,13]). The investigation

reported here has been part of the development of numerical modeling methods for acoustic

propagation in non-uniform ducts and therefore the final form of the governing equations is

specialized for that purpose.

The acoustic field equations are obtained by the consideration of unsteady perturbations

on a steady compressible potential flow. Accuracy in calculation of both the steady and unsteady

flow fields is necessary for computational verification of the theoretical results obtained. The

starting point for the formulation of both the steady mean flow and the acoustic perturbation

consists of the mass and momentum equations and the energy equation in the form of the

isentropic equation of state:

015 V.(15 _') 0 (1)
dt

_---V+ (12-V) I_ = -;V/_ (2)
_t p
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/_, 15, V are fluid properties pressure, density, and velocity, at this point in dimensional form.

Po' Po are reference values of pressure and density. It is assumed that the mean flow and

acoustic pemaxbations are irrotational and that a potential _ exists such that

perturbations are assumed on the steady mean flow such that qb = dor + do ' 15

/_ = Pr + P" The linearized continuity equation is

r2 = v+. Acoustic

= pr + p and

(3)

8p

8r-- + v.(p vd0 + pvqbr) --o (4)

The linearized momentum equation, for irrotational acoustic perturbations, is

Pr Odo
.... + .vdo)

C 2 ( Ot Vdor
r

(s)

This is used to replace p in equation (4) and the linearized equation of state,

p = Cr 2 p (6)

is used to produce an alternative form of the momentum equation in terms of acoustic pressure,

p -or( ado= -- + vdor.vdo) (7)
8t

Equation (7) is used to post-process the field solution for do to obtain the acoustic pressure field.

The acoustic particle velocity and acoustic velocity potential are related according to

= vdo (8)

4
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The perturbation process also produces the conservation equation for the steady flow

V.(pTdo)--o (9)

and the steady flow momentum equation in terms of the speed of sound

c 2 1 - (Y - 1)
, : _- [Tdo/T_r-M:] (10)

and in terms of the steady flow density

!

p =[I (y-l)- C (Vdo/Tdo-M2)]_-_ (11)

Equations (4) through (I I) are now in non-dimensionaI form where dOis the acoustic potential,

dOt is the local mean flow (reference) potential, p is the acoustic density, pr is the local mean

flow density, and c r is the local speed of sound in the mean flow. All quantities are made non-

dimensional by using the density p_ and the speed of sound c at some point, in this case the

radius at the plane x = 0 . Stagnation conditions could also serve as the reference. A reference

length R is defined as some characteristic dimension at the plane x = 0 . In the case of a

circular duct the reference length is the duct radius at x = 0. The acoustic potential is non-

dimensional with respect to caR, and the acoustic pressure with respect to p c_. Lengths are

made non-dimensional with respect to R. Time is scaled with R/c. In the case of harmonic

time dependence this leads to the definition of non-dimensional frequency fir = o_R� c. (_ is the

dimensional source frequency. M is the Mach number at the reference point.

Equation (9) is the field equation for the calculation of the compressible potential mean

flow. Equations (10) and (I 1) are subsidiary relations that can be used in an iterative solution

which at each stage uses a density field derived from the previous iteration step. VdOr , c, Or are

required data for the formulation of the acoustic problem.
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REVERSE FLOW RECIPROCITY PRINCIPLE

The application of a reciprocity relationship for acoustic propagation in potential flows in

non-uniform ducts has lagged behind the exploitation of the comparable results for propagatio n

in a quiescent medium, not because of the difficulty in posing the principle, but probably because

of the difficulty in producing solutions which could be used to test it. Numerical solutions for

duct propagation using the Finite Element Method (FEM) are now achievable [14] and provide

the capability of determining the complete acoustic field in a duct (and in the far field of a duct

of finite length) as well as the scattering matrix for a non-uniform duct inserted in an otherwise

uniform duct of infinite length. This provides oppommity for testing the reciprocity principle and

suggests the development of such a principle for benchmarking of FEM calculations.

The intent here is to approach the reciprocity principle independent of considerations of

energy conservation. A counterpart exists in the literature of unsteady lifting surface theory in the

Reverse Flow Theorem of Flax [7,8]. A reciprocity principle for acoustic propagation in non-

uniform potential flows in ducts can be obtained by an extension of the formulation of Flax.

Consider the volume f_ shown in Figure 1, which is the interior of a nonuniform duct of

arbitrary cross section. In examples the duct will be assumed axisymmetric (circular or annular),

but the principle derived is independent of the duct cross section. The duct walls can be rigid or

locally reacting. The unit normal ff is directed out of the volume at each surface. The source

plane S is where the acoustic source is specified and the exit plane S e terminates the duct and

may have a reflection matrix specified. For computations the exit plane will be assumed non-

reflecting. A typical computational problem would seek to specify the acoustic field within the

duct and the scattering matrix at the source plane for incident acoustic modes. Equations (4) and

(5) specify the acoustic field within f2 subject to appropriate boundary conditions on S, the

surface of f_.

i'qrt
Let qb1 e be a harmonic soIution for the acoustic velocity potential for the case of a

mean flow specified everwhere in the duct by its reference Mach number dr,? = Vqb and with

i_rt

specified boundary conditions. Let 42 e be a second harmonic solution for exactly the same

duct with different source conditions, but with the flow reversed, -A_ = - _Tqb. It is important

to note that in reversed flow the reference density 13 and reference speed of sound c are
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unaltered. Because of equation (4), in the case of a harmonic source at non-dimensional

frequency rlr, it follows that

(12)

With application of the divergence theorem equation (12) is reconfigured to

ff{¢_r(pT¢ +_7¢_p,)1- ¢,[(p7¢_ - _7¢_p_)l}.,_dX
S

- fff + - irl,.(qb2p , - qbtp2)}df_ = 0 (13)

The acoustic density in the two solutions is defined according to

13r Pr

Pl = --_(inrd)l + gCr'Vqbt) ' P2 = -C---2(iI]r¢2 - VCr'V¢2) (14)
r r

Equations (14) are used to eliminate the remaining volume integral in equation (12), leaving the

reciprocity principle in terms of acoustic density and potential in a form convenient for

subsequent development

ff{¢_[(prv¢, +v4,_p_)l- ¢,[(p re= - v¢_p=)]}.,_dX=o
S

(15a)

An alternate form, in terms of the acoustic pressure, obtained by using equation (7), is

f f { (P__2 - VCr,V¢2)[(prV¢ 1

s Pr

P,

+vCro_)]- (--_
%.

+ v¢;v¢_)[(pV¢ 2 - vCrp2)]}.,_ = o

(I5b)

In establishing reciprocal relationships for the scattering matrix it is important in this

development that Equation (15a) or (15b) have contributions only on the source and exit planes,

S and S . This requires that the integrand vanish on the duct walls. For a duct with rigid walls
& ff

7
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this occurs because Vqb/_ = 0, Vqb I"_ -- 0, and Vqb2"_ -- 0 on the walls. In the case

when mean flow is absent, Vdp. vanishes and p. is constant, leading to

S

For a locally reacting wall admittance in the absence of mean flow, acoustic pressure is

proportional to particle velocity. This makes the integand vanish on the walls of the duct, and

equation (16) has contributions only on the source and exit planes. Reciprocal properties of the

scattering matrix are therefore valid in the absence of flow for normally reacting impedance

walls. This is in spite of the fact that acoustic power is not conserved.

When mean flow is present and the walls are normally reacting further examination is

required to establish that equation 15(a) has no contribution on the duct walls. Myers [15] has

shown that the boundary condition at a normally reacting acoustic lining which relates the

boundary displacement _" to the component of the acoustic particle velocity normal to the

undisplaced surface is

(16)

With Vqb/ff = 0 on the duct wall surfaces S

of equation (15a) on S becomes
W

, lined or unlined, and _r = V qb

C = ¢,
Sw

(17)

the integal

(18)

The following vector identities are introduced (with account taken of the special circumstances of

the present problem):

p, qb_" •V( = p _,_".Vqb ( - p,( J_' .Vdp

8
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V.p,_, : 0

Equation (18) can then be reformulated as

/
W

S w

+ff {/_'_Tx(_XPr¢2(I_) + /_'Vx(_XPr¢l_2J_r)}dS

Sw

(19)

The case considered here is an admittance wall imbedded in an otherwise rigid wall. Therefore,

as shown in figure (2), acoustic treatment extends less than the full length of the duct. This is

physically realistic, and is also consistent with the type of reciprocity relation between duct

modal amplitudes which is sought. Following the development of Moehring [16], the last

integral can be written as a line integral on the boundary P of the surface S by using Stokes'

Theorem. Since the surface S consists of the wall of the duct (in general of varying cross
W

section), F Is chosen to consist ofclosed curves r' 1 and F 2 circumscribed on the duct wall

outside of the region of the lining, and therfore where the duct wall is rigid. There is also a

portion of F which runs along the duct wall between F t and F 2 to complete the

closed curve of Stokes' Theorem, but this curve is traversed twice, once in each direction, and

has no net contribution. To make use of Stokes' Theorem it is required that the acoustic field and

the wall displacement be continuous on S . Hence, since the acoustic treatment is of limited
w

9
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length imbedded in an otherwise rind wall duct, the transition from rigid wall to admittance

wail, as well as the variation of admittance along the treated wall, must be continuous. 17fthis

condition is met, Stokes' Theorem can be cast in the form

ff =fC xp,,¢ ).de +f
Sw EI F 2

(20)

The integral on the surface S vanishes if the line integrals vanish. On a hard wall the line
!4/

integrals vanish because the boundary displacement vanishes. This means that if the condition for

the use of Stokes' Theorem is met, then the integral of equation (19) is

With equation (7) this becomes

= f f { ¢2pt - ¢tP2} dS (21)

At a wall of admittance A there is a relation between pressure and wall velocity which is

frequency dependent and of the form

irl r ¢ = Ap (22)

The integral Q vanishes and equation (14) has contributions only on the portion of the surface

area S which corresponds to duct cross sections beyond the impedance wall, on the surfaces

S And S With appropriate restrictions on the impedance wall, the reciprocity principle is

therefore unchanged for hard and soft wall ducts.

The restriction on the impedance wall is interesting. If admittance is indeed discontinuous

along the wall, then _ has to be discontinuous. Moehring [ 16 ] has noted that for discontinuous

admittance variation there is no clear condition to be imposed on the acoustic field or wall

10
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displacement at the discontinuity. Rebel and Ronneberger [ 17 ] has shown that the condition of

admittance discontinuity and the assumption of potential flow at the wall (no boundary layer)

causes a problem with the underlying physics of the flow. What is known is that a numerical

procedure such as the FEM restricts the solution for acoustic potential to continuous functions,

and the lining displacement never appears in the final field equations and boundary condition.

Thus one suspects that t.be restriction to continuously varying admittance is not a critical issue in

numerical comparisons, but it may be in comparisons with experiment.

Equation (14) can also be written entirely in terms of acoustic potential

ff,2<or(v, - .v,,)- in,7
S r r

__ _ P,- ffm's{ Pr(Vqb2 - MM "Vqb2) + irl_ -- 21,[qb2}"ffdSc2 = 0 (23)
/" ¥

where the area S

S.
e

is now understood to include only the source and exit planes S and

APPLICATION TO A NON-UNIFORM DUCT

The discussion here is presented for a duct with a straight x axis, but is more

complicated only in the notation if the axis is not straight. Figure 2 shows a representative non-

uniform duct with cross section S(x) defined on 0 <_x <_L , S(O) = S o , S(L) = S L There is a

steady mean potential flow in the duct 2fi(x,r-'), defined as

:
ff/[(x,r-') - c(x,F) cr(x'r) Vqb. (24)

is a non-dimensional velocity based on the reference speed of sound c M(x,r-)is the

local Mach number defined in the usual way and c(x,F) is the local (dimensional) speed of

sound. (x,F) denotes a point in a cross section at x in a coordinate system appropriate for the

11
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duct geometry. The corresponding reversed flow is - AS . The non-dimensional frequency r I

can also be defined locally (local speed of sound but with reference length R) according to

oR coR c
- - - c n (25)

rlr C C C r

r1 is a local non-dimensional frequency based on the local speed of sound. In terms of local

Mach number and non-dimensional frequency, equation (23) becomes

-)l_(M-Vqbl) ] -ivllQdpL}.ffd S

- ff
SO +S t

+ in _?_o2}.,_as = o

(26)

It is assumed that at the inflow end of the duct at x = 0 the steady mean flow is uniform on the

cross section with _14(x,r-) = M 0 i , and at the outflow end x = L the steady mean flow is

uniform with )_-i(x,Y) = M L i. Reference density P¢0 and p¢Land local non-dimensional

frequency rl0 and rlL are defined similarly. The assumption of uniform conditions implies that

the inflow and outflow planes are well removed from the non-uniform region of the duct. In

computational examples it is found that for ducts with circular or annular cross sections uniform

inlet and outlet ducts of length two duct radii ahead of and beyond the non-uniformity are

sufficient. At x = 0 the outward unit normal /7 = -i and at x = L the normal is ff = i. With

these observations the reciprocity principle of equation (26) becomes

12
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P.off_2 {(I-Mo)_xl -i_oMod/1}dS

So

-%ffd/l{(1-_o_) 5d/_+ irloM o die } dS
So

= p._ffqb. {(1-M_) °d/'-_x - irlLMrd/1} dS
sL

- p,,.f f d/,{(1- M_)°%Ox
sL

-- + iT]r Mr. d/z} dS

(27)

CIRCULAR DUCT EXAMPLE

In the regions of uniform flow at the ends of the duct at x = 0 and x = L acoustic

potential can be approximated by an N term eigenfunction expansion in terms of duct modes

(Figure 2). In the case of a circular duct the expansion can be expressed at x = 0 in vector-

matrix form for angular dependence e -,,,,0 as

(28)

The derivative is

a_ff(x,r,O)= [_(r)l[ej(x)I[-ik_ I{a_}e-"'° + IC_(r)]lej(x)I[-ik-la_,}e-""e (29)

[_ (r)j is a 1 x N row matrix of duct radial modes, the same for both right and left propagating

modes, x) and e£ (x) are N x N diagonal matrices with typical elements e

[-ik_ j -ik- l are Nx N diagonal matrices with typical elements -ik: la2}

13
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and {a_} are N× 1 vectors of modal amplitude coefficients for right (positive x) and leR

(negative x) modes. A similar expansion with modal amplimdes {b£} and {b£} appliesat

x = L . The axial wave numbers are given in the nominal flow for modes which are cut on by

i I / oo 2,, _ 1 - M--+- 1 - (1 - M 2)
@L 1 -M - nJ (30a)

and for modes which are cut offby

_ __ Krn n 0n 1 -M= i (1 -M 2) - 1 (30b)

In reversed flow for cut on modes

x mn _ 1 K n 0

rl J2 1 --M a M+ 1 -(1 -M z)
(31 a)

and for cut off modes

k :k

-U
1

1 1 - M 2

M-v- i (31b)

The non-dimensional frequency r1 is based on the local speed of sound and the reference

radius. K o are eigenvalues determined from the uniform duct eigenproblem [ 18] in a uniform
tntl

duct with local radius possibly different than the reference radius. In the case of the circular duct

14
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theyaredeterminedfrom J/(K,,,, o) = 0, with J being the Bessel function, m is the angular

mode number and n, 1 _ n _ N, is the radial mode number, o is the ratio of the local duct

radius to the reference radius, o = R t / R. o r I is therefore non-dimensional frequency based on

local speed of sound and local duct radius. At x = 0 where the reference radius and c® are

become identity matrices. At x=L [e2(m) f and [e:(L)] can be absorbed into the

L J L J

amplitude coefficients. The convention on the sign choice in equation (30) corresponding to

k" is that the positive sign is chosen if the radical is real and the minus sign is chosen if the
X

radical is imaginary. The opposite choices are made for k- k* then corresponds to waves
X

m?l

propagating in the positive x direction (except for the possibility that with Mach number negative

some propagating waves may appear not to propagate in the positive x direction due to

convection) and to cut-offmodes decaying in the positive x direction. The opposite

interpretation applies for k-
X /'n?l

With these observations, deleting the implied dependence on the mode number m, and

taking the reversed flow solution to have angular dependence e ,,,0, it is possible to express the

solution qb_ and its counterpart reversed flow solution qb2 as

c_qbl-[_]f-ik'ldx ]{a]} e-°"° ÷ [q_][-ik-1 !al-} e-"° (33)

The corresponding reversed flow solution is

dOa = [_]{a{}e i''° + [_]{a/}e "° (34)

0_bZc?x-[_ ][-i k'2 ]{a{ }e "°÷ [_ J[-i k- 2 Ia2-}e ,,,0
(35)

15
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It is important to note that the eigenvalues and eigenfunctions are independent of angular

dependence e -,,0 or e"°. The choice of angular dependence in the two solutions eliminates

the angular dependence in the integrals of equation (27). The physical implication is that of a

spinning mode which has the same vector sense with respect to the flow direction. In

calculations, scattering coefficients do not depend on the sign of m.

In carrying out the integrals of equation (21), the notation

[Jol (36)
S o

s_

is introduced. IJ01 and [JLJ are N x N diagonal matrices resulting from the orthogonality

oft.he duct eigenfunctions at x = 0 and x = L. For a circular duct the eigenfunctions _,,,,,(.r)

are Bessel functions of the first kind of order m . In numerical implementations it is convenient

to generate the Bessel functions, solve the related eigenproblem, and generate [JoJ and [JLJ

• using an FEM formulation.

With the eigenfunction expansions of equations (32)-(35) the integrals of equation (27)

can be written

%f f - in0M0,,}ds
So

= 9_o[(1 -M2)({a2"} r+ {a_}r)[Jo]([-ik . ]{a,*} + [-ik- ]{a,-})x 01 01

-inoMo({_: + {_z}r)[Jo]({_, } + {a,-})]
2 c9_2 (38)

%f f ,, ((1 - Mo)--£;+;n0M0,2}as
So

=P,o[(_- Mo_)({_,'}_+ {_,-}_)[Jo]([-;_" ]{_;}+[-;_-]{_Z})02 02

+ irloMo({a,*}r + {a,-}r)[Jo]({a Z} + {a2-}) ]

(39)

I6
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Pr L UX

= 9%[(1 -M:)({b2} r+ {b;}r)[JL]([-ik _ ]{b[} + [-ik- ]{b[})
x LI L1

,}r- iT]LML((b2 + (bz}r)[JL]( {bl"} + {b,-})]

(40)

s_

_02
-"V--- + i'qL ML CP2} dS
C1X

= p,[(t - M2)((b_'} r + (b_-}r)[4]([-;k _ ](b;} + [-_k-z ](b;})

+ iqzML((bl'} r + {b[}r)[Jr]({b2 _} + {b2-}) ]

(41)

The notation k _ designates the axial wave number evaluated at x = 0 for the nominal flow
x 01

direction, k :_ corresponds to reversed flow. k :_ designates the axial wave number
x 02 XL1

evaluated at x = L for the nominal flow direction, k + corresponds to reversed flow.
x L2

In equations (38)-(41) amplitude coefficients { a _ } are associated with an eigenfunction

expansion at x = 0 and {b*} correspond to x = L . With the use of equations (30a) and

(30b), introduce the following definitions for the nominal flow direction for propagating modes

( k real)

* = ..... (42)

a- 1 = 9r[-i(1 - M2)k - - irl_r ] -- ig r1 1 - (1 - M 2) KO (43)
x 1

17
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andfor cut-off modes( k complex)

(x"1 = pr[-i(1 - MZ)k;l (1 (44)

- -irlM] : p,rl (I - Ko - I(x i = pr[-i(l - M2)k- I
(45)

Analogous definitions can be introduced in reversed flow using equations (31 a) and (3 lb). For

example, for a propagating mode

tc¢2 = pr[-i(1 -M2)k * +irlM] = -iprrl 1 -(1 -M z) Ko (46)
x 2

It becomes apparent that the definitions do not change in reversed flow so the conclusion is made

that c__ = cC = c_" and c_- = c_- = c_- for both propagating and cut-off modes.
2 1 2 1

Furthermore, it is apparent that c_- = - c_" and these are to be evaluated at x = 0 and x = L

as required.

Equations (36)-(41) can be rewritten in the form

O,off*_{(1-M_)OOO_Ox
So

-- - irloM o qbl} dS

} [:oI[_o]_a,"}+(a;}q4][_-o]{a,-}

+ {,_;}_r..,,-o][_-o]{,_'}÷ {,_;}T[jo]i_-o]{a_-}
(47)
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S o

: {_(}r[Jo][_'o]{_;} + {_(}r[Jo][_-o]{_2-}

+ {al-}T[Jo][O_'o]{a;} + {al-}T[Jo][ff,-o]{a;}

(48)

cJx
SL

-in_MLa_}dS

= {b/}r[JL][c_'L]{b(} + (b;}r[JL][_-_]{b[}

+ {bz}r[JL][o:+L]{bl "} + {b2}r[JL][C_-L]{bl -} .(49)

s_

- inLML002} ds

* T
{b, } [JL][_-_]{b=-}

+ {b( }r[JL] [_-L]{b=- }

(50)

The diagonal matrices [C_±o] and [c_*£] are have elements defined by equations (42)-(46).

Elements c_o are evaluated at x = 0 and c_t. are evaluated at x = L and the distinction
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between nominal flow and reversed flow disappears. At x = L the modal amplitudes are b_

and b - . Modal amplitudes a _ and a - and b" and b - are related by the acoustic
n rl n /1 tl

potential scattering matrix according to

{ta {}ab :IS] b- (51)

where the scattering matrix is defined as

R] [_]Is] = [r]
(52)

Contained in IS] are the usual reflection matrix [R] and transmission matrix [T] for acoustic

modes incident at x = 0 and reflection and transmission matrices [R] and [i _] for modes.

incident at x = L. There will be a scattering matrix [S 1] for nominal mean flow and a second

one [Sz] for reversed flow. The relationship between [$1] and [Sz] can be obtained using the

reciprocity theorem.

When the integral evaluations of equations (47)-(50) are used in equation (27) there is

considerable simplification due to the fact that c_o = - c_ -- - c% and c_ = - _ = - c_L .

The diagonal matrices [ c_0] and [_L] are constructed by evaluating equation (42)- (45) at

x = 0 or x = L for each acoustic mode included in the acoustic potential expansions of

equations (32) or (35). [3"0] [c_0] and [JL] [°_L] are diagonal and therefore equal to their

transpose. The result of the simplifications is

{al-}r[Jo][C_o]{az'} + {bl"}r[JL][c_L]{b[} =

{a_}r[Jol[_o]{al "} + {bz }r[JL][c_L]{bt -} (53)
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Equation (53) can be written in partitioned form

al- IT
bl+

[Jo][%]

[JL] [% ] t ÷

122

b;

[Jo][%]
+

a 1

bI- (54)

Equation (54) is rewritten by introducing the definition of the scattering matrix from equation

(51) and by using the definition

[J:][=:]
(55)

The result is

÷

121

b 1-
{12;

[Sl]r [J] [c_]
b 2-

a 2

b;
[s2]r [J-][_] (56)

Equation (56) reveals that

[sLlr[j][c_] : [_[=][s2] (57)

or

[J][c_][sL] = ([_[c_][s2]) r (58)

Equations (57) and (58) show that a weighted version of the nominal flow acoustic potential
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scattering matrix and similarly weighted version of the reversed flow acoustic potential scattering

matrix are transposes of one another. In terms of the acoustic potential reflection and

transmission coefficient matrices the result is

[et]r[So] [%] = bro][%] JR2]
(59)

[Rllr[:L] [% ] -- [:L] [%] [R=]
(60)

[r_]T[4] [%] --Iso] [%] ri':]
(61)

(62)

The reciprocal relationships of equations (59)-(62) involve acoustic potential reflection and

transmission coefficient matrices, with diagonal elements representing reflection and

transmission coefficients in the incident modes (here referred to as direct reflection or

transmission) and off diagonal reflection and transmission coefficients from the incident mode to

another mode. Equations (59) and (60) show that direct acoustic potential reflection coefficients

are invariant in reversed flow. The transmission coefficient matrix pairs [ T1] , [ Y2] and

[ 2Pl ], [iP2 ] are not reciprocally related but the pairs [ T 1 ], [ T2 ] and [ T_ ], [ Tz ] are related

by equations (61) and (62). These results for acoustic potential reflection and transmission

coefficient matrices are more interesting than those obtained for acoustic pressure reflection and

transmission coefficient matrices in the absence of flow [2] because they identify a relationship

between reflection coefficient matrices in nominal and reversed flow which includes the

observation that the direct reflection coefficient (in the incident mode) is invariant to flow

direction.
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RECIPROCITY IN TERMS OF ACOUSTIC PRESSURE

The entire development to this point has been carried out in terms of acoustic potential

because the field equations (4) and (5) favor this formulation. Equation (7) provides a direct

relationship between acoustic pressure and acoustic potential which can be used to restructure the

reciprocity results in terms of acoustic pressure modal amplitudes. In terms of local non-

dimensional frequency and local Mach number in a uniform section of duct with uniform flow,

equation (7) can be rewritten as

p -- -prcr(inqb + (63)

With equation (63) a connection between acoustic potential modal amplitudes and acoustic

pressure modal amplitudes can be established. Consider an acoustic mode propagating in the

uniform section with the axial wave number given by equations (30 a,b) or (31 a,b). By referring,

for example, to equation (33), the pressure amplitude can be found in terms of the potential

amplitude in nominal flow as

k a-

-4- ± :k

P 1 = -i'qPrCr (1 - M -2--_) 1n '1 = f 4'1

(64)

and in reversed flow by

+ 1
_: -irl (1 + M --i-_ * - ±"t9 2 = P r Cr ) _-2 _ 2

(65)
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These relations between acoustic pressure modal coefficients and acoustic potential modal

coefficients are evaluated at x = 0 and x = L to produce transformations between acoustic

potential modal amplitudes { a* } , { b :_} and acoustic pressure modal amplitudes

{c_}, (d*} :

D0

(66)

÷

_o

_0

]c1-I Icl-p; d(j : (d;
(67)

(68)

(69)

The 2 N x 2 N diagonal matrices [B_] and [B; ] have coefficients defined by equations (64)

and (65) for each mode, evaluated at the appropriate end of the duct, arranged along the

diagonal. Equations (66)-(69) and equation (51) provide a relationship between the scattering

matrices for acoustic potential and the scattering matrices for acoustic pressure:

IS,] = [27;] -_[s_] [B_] (70)
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[Y:] --[B_]-_[s_][B'] (71)

[S 1] , [Sz] are the scattering matrices in nominal and reversed flow for acoustic potential modal

amplitudes and [_ ], [Sz ] are the scattering matrices for acoustic pressure modal amplitudes.

Equations (66)-(71) and equation (56) are used to arrive at the reciprocity relationship for

acoustic pressure modal amplitudes in terms of the nominal flow and reverse flow acoustic

pressure scattering matrices:

[B3-_ [_]_[oq [_] [B;] _-[_] [oq[_] [g:] [B=]-_ (72)

The four reciprocal relationships are:

[_;]-I[.RI]T_'JO][_o][_o] : [_;][Jo][_o][R2][_o ]-1

[p;]-' [=o][Pol: [pt][J l rPo]-'

.(73)

(74)

(75)

(76)

The reciprocal relationships of equations (73)-(76) involve acoustic pressure reflection and

transmission coefficient matrices, with diagonal elements representing reflection and

transmission coefficients in the incident modes (here referred to as direct reflection or

transmission) and off diagonal reflection and transmission coefficients from the incident mode to

another mode. From equations (73) and (74) it is seen that in terms of acoustic pressure modal

amplitudes direct reflection and transmission coefficients in nominal flow and reversed flow are

not invariant but are simply related. Transmission coefficient matrix pairs [ Tt] , [ T2] and

[ T_ ], [ T2 ] are not directly related but pairs [ T l ], [ T2 ] and [ T1] , [ T2 ] are related by
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equations (75) and (76). The result in the case of a plane wave incident is particularly simple and

will be given in the following section.

Because of the way in which equations (73)-(76) were developed, the weighted, or scaled,

matrices on the right and le_ hand sides are equivalent to their counterparts in equations (59)-

(62). This convenient definition of scaled pressure reflection and transmission matrices makes

them numerically equal to their scaled acoustic potential counterparts.

ACOUSTIC POWER CONSIDERATIONS

Reciprocal relations between scattering coefficients in uniform duct sections bounding a

non-unifom section obtained above are of theoretical interest and are also a useful tool for

benchmarking numerical models of duct propagation. Also of interest in this respect are acoustic

power transmission and reflection characteristics of the nonuniform section. For a rigid wall duct

acoustic power conservation provides a valuable benchmark and for an acoustically treated duct

acoustic power transmission calculations are required to assess performance. In this section

acoustic power formulations appropriate for the propagation model are obtained.

There are two commonly used types of acoustic intensity formulations in moving media

[19]. The Type I definition due to Morfey [4] is valid as part of a conservation law in non-

uniform ducts for compressible potential flow, while the Type II formulation due to Ryshov and

Sheffer [20] is valid as part of a conservation law only for uniform flow, and therefore only for

uniform ducts. In the following development the Type I definition of acoustic intensity is used in

the uniform flow sections on either end of the nonuniformity to obtain acoustic power

expressions.

The Type I acoustic intensity is defined in non-dimensional form as the time average

acoustic energy flux

p c] _p_c : pY+ p c(._r'9")_7+--pc _p2+ M(M'F)p
(77)
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where .8_ is the local Mach mlmber of the flow and 9r, c are local values of the non-

dimensional mean flow density and speed of sound in the mean flow. For propagation in uniform

flow in the direction of the x axis equation (77) simplifies to the scalar form

p®c_ (1 + M2)pu + 9 c Mu 2 + --p,.c Mpz
(78)

Acoustic power is obtained by integration over a cross section. For the circular cross section

: ( ' /Aref9_ c_ - ffs (1 + M2)pu + 9CrMU 2+ --grCr Mp 2 dS (79)

A modal expansion as given by equations (32) and (33) is used to obtain an acoustic power in

terms of acoustic potential modal amplitudes. Because of orthogonality of the duct

eigenfunctions and because the duct eigen_nctions are the same for propagation with and against

the flow, the evaluation of acoustic power is considerably simplified. The result can be cast in

the form of a "power matrix"

f P TP _ a" ,,,, ,,,, a = a [p]
A 3 a'- P+- P-- a- a a-

raf p _ C nn nn

(80)

where, for example, a" denotes the complex conjugate of a . The power matrix [P] is

structured in diagonal blocks due to orthogonality of the acoustic eigenfunctions. The diagonal

blocks consist of power coefficients for positive and negative acoustic modes. The off-diagonal

blocks represent power due to interaction of positive and negative modes with the same

eigenfunction. If the amplitude coefficients are for acoustic potential, the power coefficients are
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]" k* k_ k*'
1 __k ([ _M__ =) + --(1 -M _-Z--)]
4 rl2p_c'J{(I *M2)[ "q q n q

k" k" k _" k _
_-2M( _...L_)(_.5C) +2M(1 -M _---L-)(1 -M--SC)}

rl rl rl 1"1

1 1]2= -_ pc J {2M + (1 -M2)(--

k_* k _

, + __L_) }
rl rl

(8Ia)

1 rl z k-" k- k- k-"=_ _ _..___)
P_- 4 9rCrJ{(1 +M2)[ 1"1 (1 -M rl + -L(lrl -MS-L-)]1.1

k-" k- k-" k-
+2M(__5__)(_..5_*) +2M(1 -M _-5--)(1 -M-L)}

T1 q T1 1"1

i 1]2
= _ 9c J {2M+(1 -M2)(--

k-* k'-

+_L)}
q

(81b)

k*" k- k- k"
p+_ I or._ +M2)[_(1 -M --_) + ---_ (i -M _-5-)1

,_ =_-rl29,c, ,={( 1 q rl q rl

k'" k- k +" k-
+2M( *---L-)(_5C) +2M(1 -M _----_--)(1 -M-L)}

q q q q

I

= _ rlZgrc, J--{2Mr,_- + (1 - ----MZ)(--

k"J t_-

, + __5__) }
q q

(81c)
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p+* = _p-- _ 11.12nn nn 2 P_ cr J_
1 - ( 1 - M2)( K_._oo)2

Krl

P+- :-P'* :0
tiT/ _lgl

There is no interaction power for cut on modes.

For cut off modes

(83)

k .,. =k-* , k =k +"
X X X X

k _" k- k-
--X + X -- 2 --X

rl q rl

k-" k _ k +
= + x - 2 x
rl rl n

k*" k* 2M
Jg X

n n (1 - M 2)

/_ -* k -

X JC
+

q rl

2M

(1 - M 2)
(84)

and the acoustic power transmission coefficients are

=P =0
nil

+_ .. _ i n2 i (Ko )2P = -P 2 PrCrJn (1 -M 2) -
nn ,,,1 Kr 1

(85)

For cut off there is only power related to the interaction of positive and negative modes. It is noted

that the acoustic power coefficients based on acoustic potential amplitude are invariant to the

direction of the flow.
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In the case the amplitude coefficients are for acoustic pressure, the power coefficients can

be obtained by making use of equation (64) which relates pressure amplitudes to acoustic potential

amplitudes. The results are

J
tin

4 PrCr

(1 + M 2)

k÷* _*

x x

q ÷ q

_+* k +

1 - M _---L- 1 - M--L
rl q

+ 2M

x

rl

+*

1 - M _--5--
q

+

x

q

k
I - M--L

q

+2M

(86a)

J
?In

4 PrCr

(1 + M 2)

x x

q rl
+

k-, /_-

1 - M x---L- 1 - M-L
rl n

+ 2M

_,

rl

_,

1 - M _---5---
rl

_
x

13

_

1 - M --L
rl

+ 2M

(86b)

t_4-- --

J

4 PrCr

(1 _" M 2)

x J¢

rl rl
+

1 - M _--L-- 1 - M --C
"q q

+2M

x

q

..

1 - M _---5---
rl

.17

rl

1 - M-L
rl

+ 2M

(86c)
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kin

J

4 PrCr

(1 - M 2)

k-* k ÷

x x

rl rl
+

k-, k _.

1 -MSL-- 1 -M --L
q rl

÷2M

x

13

_.

1 - M _--L-
r]

x

rl

_

1 - M --2L
rl

+2M

(86d)

The conclusions drawn from this formulation in terms of acoustic pressure amplitude coefficients

are similar to those obtained from the acoustic potential form. The acoustic power coefficients for

the case of cut on modes are

r

p** _ 1 j 1 _1 -(1 -M2)( K°)2

'_ 2 9 r c r '_ k* %t _: rl
(i -M "----)2

n

1 j 1 I1 - (1 -M 2)(Ka)2P_- - 2 p,.c. " k- Krl

(1 -M 2
1]

P+- = -P" =0
nil tln

For modes which are cut off, the acoustic power coefficients are

(87)

p ÷+ ÷÷=P =0
nn tin

p+__ i j 1 _ (1 -M 2)(K°)2- 1

2 p cr nn k- _ Krl

(1 - M :-Z- )_
lq 2
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i y 1 i (a m 2)(Ka)2P"£ 2prc r " k* Kq

( 1 - M-Z---= )z
q

-1

(88)

The power coefficients in terms of acoustic pressure amplitudes depend on the direction of the mean

flow, but conclusions drawn about the vanishing or non-vanishing of the power coefficients for cut

on and cut off modes are the same as in the case of acoustic potential amplitudes.

The common result of both formulations is that elements of the diagonal blocks of the power

matrix vanish for cut off modes and elements of the off-diagonal blocks vanish for cut on modes.

For cut on modes there is no power contribution due to interaction of positive and negative

propagating modes. For cut off modes there is no power contribution due to individual positive and

negative modes but there is power due to the interaction of positive and negative modes.

Acoustic power at x = 0 is written in terms of the power matrix and the amplitude

coefficients (either potential or pressure formulation)

• * r - .... }r ]{a-}II 0 = {a } [P 0]{a } + {a [P"+"-0

.- r -. _ ]{a-} (89)+ {a } [P_oJ{a } + {a'-}r[P-- °

With the source considered to be at x = 0 , the reflection matrix can be used to replace reflected

modal amplitudes to yield
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.+ ÷ _.

170 = {a"}r[Pno]{a } ÷ {a'*}r[P]7, o][Rz]{a }

+ {a"}r[R;]r [P£ 0]{a'} + {a"}r[R;]r JR2] {a'}

(9o)

This result requires interpretation. If only cut on modes are included among the incident modes a"

then there is no interaction power and the net power is accounted for by the sum of incident power

and reflected power, represented by the first and last terms. If among the incident modes there are

ones which are cut off, then there is an additional component of net power due to interaction of

incident and reflected cutoffmodes, represented by the middle two terms. In this case the net power

is not conveniently partitioned between incident and reflected contributions.

Acoustic power at the exit end of the duct, x = L, is similarly written in terms of modal

amplitudes

17L = {b'+}r[P++ ] {b+)

(91)

The termination is assumed to be reflection free, so only right modes are present. The modal

amplitudes are related to the source modal amplitudes via the transmission matrix. This yields.

E L = {a'_}r[T[]r[p" *r][T1]{a'}

(92)

The form of equations (89)-(92) is the same in direct or reverse flow, however for multi-modal

propagation no simple relation between acoustic power in nominal and reversed flow appears to

exist, nor is there a simple relation when the source location is reversed. As will be shown in a

companion paper, there are simple relationships for power under flow reversal and source reversal

for a one dimensional model of propagation valid at low frequencies.
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For a rigid wall duct energy conservation requires that II L = g0" For an acoustically treated

duct a metric for performance of the lining is the transmission loss defined by

II L

TL = 20 logl0 lI--o
(93)

The presence of possible mode interaction power somewhat complicates the traditional definition

of transmission loss, and there could also be an argument for replacing II 0 with only the first term

in equation (90), this being the incident power.

CONCLUSION

A reverse flow theorem for acoustic propagation in compressible potential flow has been

obtained directly from the field equations without recourse to energy conservation argamaents. A

reciprocity theorem for the scattering matrix for propagation of acoustic modes in a duct with either

hard walls, or a section of locally reacting absorbing wall imbedded in an otherwise hard wall,

•follows. It is found that for a source at a specific end of the duct, suitably scaled reflection matrices

in direct and reverse flow have a reciprocal relationship. Scaled transmission matrices obtained for

direct flow and reversed flow with simultaneous switching of source location from one end to the

other also have a reciprocal relationship.

The approach presented here is an alternative to the approach o fMoehring [3,16], with the

distinction that no energy conservation condition is used. It has been exploited to provide explicit

reciprocal relations which are of theoretical interest, but which also have the more pragmatic

significance of providing a convenient means for benchmarking large scale propagation codes such

as those used in this investigation.

Numerical verification of the reciprocal relationships is the subject of a companion paper.
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RECIPROCITY AND ACOUSTIC POWER IN ONE DIMENSIONAL

COMPRESSIBLE POTENTIAL FLOWS

Walter Eversman

Mechanical and Aerospace Engineering

and Engineering Mechanics

University of Missouri-Rolla
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ABSTRACT

A reverse flow theorem for one dimensional acoustic propagation in compressible

potential flow has been obtained directly from the field equations without recourse to energy

conservation arguments. Reciprocity relationships for the scattering coefficients for propagction

are derived. It is found that for a source at a specific end of the duct, suitably scaled reflection

coefficients in direct and reverse flow have a reciprocal relationship. Scaled transmission

coefficients obtained for direct flow and reversed flow with simultaneous switching of source

location from one end to the other also have a reciprocal relationship. Reciprocal relations and

power conservation arguments are used to show that scaled power reflection and transmission

coefficients are invariant to flow reversal and switching of source location from one end of the

duct to the other. Numerical verification of the reciprocal relationships is given in a companion

paper in which multiple mode propagation and one dimensional propagation are considered

INTRODUCTION

In a companion paper [ 1] an acoustic reciprocity theorem in a compressible potential

flow in non-uniform ducts has been obtained directly from the field equations. It was shown that

reciprocity holds for ducts with rigid walls and for ducts with a finite length dissipative lining

imbedded in an otherwise rigid wall. In the present investigation the methodology of [1] is

applied to the simpler case of one dimensional propagation, valid for low frequencies, that is

large wave length to geometric cross section dimension ratio. The principal simplification is that
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acoustic treatment is no longer a possibility within the acoustic formulation. The energy

formulation of Moehring [2,3] then becomes a straight forward option because dissipative linings

and cut-offmodes do not need to be considered. However, here the approach of [1] based directly

on the field equations is used.

Aside from finding a reciprocity relationship, a goal here is to expand upon an invariance

property for acoustic power transmission in converging-diverging ducts found by Davis [4]. This

turns out to be a result of reciprocity and energy conservation.

In another companion paper [5], the reciprocity relati0ns found in [1] and in the present

paper are substantiated by numerical experiments based on a finite element simulation.

RECIPROCITY IN ONE-DIMENSIONAL FLOW

In some cases it is possible to use a one-dimensional approximation for steady flow and

acoustic perturbations. A reverse flow reciprocity relationship can be obtained in this case using

the method of [1]. Figure 1 shows the duct under consideration, which is in fact three

dimensional, but it is assumed that the large wave length limit exists so that acoustic propagation

is one dimensional at each cross section. Furthermore, the duct shape is restricted so that the

mean flow at a cross section can also be treated as one dimensional. The cross sectional shape of

the duct is not a consideration in this one dimensional approximation. The one-dimensional

acoustic continuity equation is

_qbrA apot + V.(p,A + pA--_-x) = 0 (1)

where A is the local cross sectional area of the duct. The one-dimensional acoustic momentum

equation is

Pr
p : ----_, (irl, _ + M ) (2)

C rdX
r

2
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or

p -- -p,(in,qb + M-_) (3)

The steady flow is obtained from

_do) = o
_x (oA-gx

(4)

and the relations between mean flow velocity and mean flow potential and acoustic particle

velocity and acoustic potential are

an%
M-

r Ox

(5)

U

0x
(6)

The acoustic relationship between pressure and density is

p=c 2r p
(7)

Mean flow speed of sound is determined by

c 2 1 - (Y - 1)
, -- i [vq%'vq%-_ 2]

(8)

and the mean flow density is
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1

p,.= [I - (Y-I) -M2)] (9)

Equations (1) and (9) are non-dimensional using the density p, and the speed of sound c at

some point, in this case the plane x = 0. Stagnation conditions could also serve as the

reference. A reference length R is a (hypothetical) radius corresponding to a (circular) source

"plane" at x = 0, the reference cross sectional area. Acoustic potential is non-dimensional with

respect to c R, and the acoustic pressure with respect to p c_. Lengths are made non-

dimensional with respect to R. Time is scaled with R/c. In the case of harmonic time

dependence this leads to the definition of non-dimensional frequency fir = co R/c. co is the

dimensional source frequency. M is the Mach number at the reference point. With this

convention, the reference non-dimensional frequency rlr and the local non-dimensional

frequency r1 are defined as in [1] where the restriction of one dimensional propagation is not

invoked. Non-dimensionalization described here differs from the usual one dimensional

development in which some characteristic duct length is generally used as a reference length. The

.convention used here makes everything consistent with [1 ], in particular the non-dimensional

frequency fir.

Consider the duct shown in Figure 2, which is locally of arbitrary cross section, and is

terminated on each end by a section of uniform duct, of length sufficient to assure uniform mean

flow and propagation in terms of acoustic modes. The source plane x = 0 is where the acoustic

source is specified and the exit plane x = L terminates the duct. For computations the exit

plane will be assumed non-reflecting. In general, a typical computational problem would seek to

specify the acoustic field within the duct and the scattering matrix at the source plane for incident

acoustic modes. Figure 2, originally presented in support of the discussion in [ 1], can be used

here to highlight the one dimensional approximation. It is assumed that the mean flow is

everywhere described in terms of the axial coordinate x so that in the nonuniform section

M(x,r) = M(x). Acoustic propagation is assumed to also depend only on the axial coordinate,

so that it is locally planar. The duct walls do not provide a boundary condition in the one-

dimensional approximation so that the unit normal t/there plays no role. The unit normal on the
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terminating planes is axially directed. Equations (1) through (9) specify the acoustic field in the

duct of Figure 2 subject to the restrictions noted.

Let qbI e in,t be a harmonic solution for the acoustic velocity potential for the case of a

mean flow specified everywhere in the duct by its reference Mach number _Q = Vqb r and with
in ,t

specified boundary conditions. Let ¢2 e be a second harmonic solution for exactly the same

duct with different source conditions, but with the flow reversed, -_Q" = - Vqbr. It is important

to note that in reversed flow the reference density 9r and reference speed of sound c are

unaltered. Because of equation (1), in the case of a harmonic source at non-dimensional

frequency qr, it follows that

f ( dpz[iVlA 91 + V.(oA vOp I + ff/fA 91)] - (_l[il]rA 92 + V'(pA V_P2 - _A Oz)]}dx = 0

(lo)

Here, for ease of notation, and for a degree of similarity with [1], the gradient operator is used to

denote

and

0
v -- (it)

Ox x

= M g (12)
r Fx

with g the unit vector in the x direction. With application integration by parts, which is

equivalent to the divergence theorem in [1], and by using equation (2) to partially replace 9L

and 92 , and to subsequently eliminate the remaining integral on x , equation (12) is reduced

to

[_2(JDrA 0¢10X + l_rrA iOl) - ¢I(PrA 9¢20_- - _AP2) ]°z = 0 (1:3)
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When this is written entirely in terms of acoustic potential the result is

[ AP r {qb2[(1 - M2) Od_t--x---inMdP L] - qbz[(1 - M2) O_ 2 + inMqb2]} ]oL : 0
(YX (Yx

(14)

In [ 1], eigenfunction expansions are used to define the acoustic potential field in the uniform

flow regions at x = 0 and x = L. This is still appropriate, with the simplification that only the

plane waves propagate, and no analysis is required to determine the modes and wave numbers.

There is one "mode" propagating in each direction in ihe uniform duct sections, so that

there is only a superposition of a right and left wave, given for example here for the nominal

flow solution at x = 0 in the form [1]

=a I +a 1- (15)

02: - (-ik]l)al" + (-ik-1)a/ (16)

The axial wave numbers are

±

X tn/'l

-T-
1

M2 ( -M + 1) (17)1

2 1 -M 2(M+ I) (I8)

The superscript choice 4- corresponds to right and left waves, rl and M represent local values

of non-dimensional frequency and Mach number determined by the local speed of sound, with

"q still based on the reference length. The operator arising in equation (14)

6
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L{qb} (1 M2) ax (19)

introduces the parameters a" and co- corresponding to right and left waves, for example at

x=O,

" = - - iqM] = -ipr na_ 9r[-i(1 M2) kX'l
(20)

_-_ -- pr[-i(1 - v2)< - - inMl = ip_n (21)

- in reversed flow. It is noted that a 2 a 1Similar expressions exist for a 2 , + = _ = a and

c_2 = a i = -a. a is evaluated at the ends x =Oand x =Lasrequired.

With these definitions, equation (14) can be rearranged in a matrix form [1],

a l-

b[

Ao %

A L o_L t tfta2 a2 T

b; b;

A o (Zo

A L a L f +

a 1

b 1-

(22)

Modal amplitudes a t and a - and b _ and b - acoustic potential wave amplitudes at

x = 0 and x = L , are related by the acoustic potential scattering matrix according to

(23)

where the scattering matrix is defined as

IS] = (24)
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R

reflection free termination at x -- L . /_ and

for a source at x = L and reflection flee at x

nominal mean flow and a second one [$2] for

used in equation (22) to obtain

and T are the reflection and transmission coefficients for a source at x = 0 with a

/_ are reflection and transmission coefficients

= 0. There will be a scattering matrix [S 1] for

reversed flow. Equations (23) and (24) can be

a 1 a 2

[Sl]r[A] [_]
b1- b; {ta 2 a t"

[S2lr [A] Ice]
b 2 b,-

(25)

where the definition

A0cz 0

A L O_L

[A] [_] _(26)

is introduced. The scattering matrices for nominal and reversed flow are IS z] and [S 2 ]. The

implications of equation (26) are summarized by the reciprocity relations

([S_]r[A][_]) = [A][_][S 2] (27)

and

[A][cc][S1] = (EA]E_][S2]) r (28)

Equation (27) and (28) are used to establish the following relationships for the acoustic

potential reflection and transmission coefficients:

R I =R 2

8

(29)

(30)
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7'zAo _xo = TtALOSL (31)

_lAo% -- TzALo_L (32)

By using the definitions of czo and ccL Defined by equations (20) and (21) evaluated at x = 0

and x = L , equations (31) and (32) are written

T 1

A 0 OrL Crr.

AL Pro Cr 0

(33)

A 0 Pr L Cr L

AL Pro Cro

(34)

Equations (29) and (30) produce the interesting result that the acoustic potential reflection

coefficients, at the left end and at the right end are invariant to flow direction. No reciprocal

relationships link the leR to right transmission coefficients T I and T2 or the right to left

transmission coefficients iFt and 2?2 in nominal flow and reversed flow. Equation (33)

links the left to right transmission coefficient T 1 in nominal flow to the right to left

transmission coefficient i?2 in reversed flow. Equation (34) links the left to right transmission

coefficient in reversed flow T 2 to the right to left transmission coefficient iPl in nominal flow.

The reciprocal results of equations (29)-(32) are for acoustic potential modal amplitudes.

In the case of acoustic pressure modal amplitudes a transition to acoustic potential modal

amplitudes is made through equation (3). The transformations from acoustic potential to acoustic

pressure for right and left waves in nomnal and reversed flow are

q_*t---lS*p_" , _-_ = Is-&- (35)

qb"2 -- P-p2" , do-2= P*P2- (s6)
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where

1 +M 1 -M
_3"- , p- - (37)

-iTlprcr -irlprC _

Mach number and non-dimensional frequency are based on the local speed of sound. Non-

dimensional frequency is still based on the reference length. Non-dimensional density and non-

dimensional speed of sound are evaluated locally.

Equations (35) and (36) are used to introduce pressure modal amplitudes in equation (22).

The scattering matrix is now in terms of pressure scattering coefficients

[_'] =
R T

TR

(38)

ARer following the same steps leading to equations (29)-(32), reciprocity relations for acoustic

pressure scattering coefficients are found to be

-0 [3 -0
or

(1 + Mo)2
(39)

-= P'_ = 13, _ (1 - ML)2 =-

RIAL °_L - R2AL °:r_ --7 or Rt - )2 R2
(40)

_J+L _ _3*0 A 0 Pro Cru (1 + Mo )2

10
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=- _ L%T 1A o o_o _ or _ _ co

Equations (39)-(42) are written both implicitly in terms of coefficients defined above and

explicitly in terms of local area and flow conditions. The roach number is for the nominal flow.

Pressure reflection coefficients are not invariant in reversed flow but are reciprocally

related as given by equations (39) and (40). No reciprocal relationships link the left to fight

transmission coefficients T-7 and _ or the fight to left transmission coefficients T7 and

T2 in nominal flow and reversed flow. Equation (41) links the left to fight transmission

coefficient _ in nominal flow to the fight to left transmission coefficient T2 in reversed flow.

Equation (42) links the left to fight transmission coefficient in reversed flow T2 to the fight to

left transmission coefficient T I in nominal flow.

ACOUSTIC POWER CONSIDERATIONS

In the case of one dimensional propagation, additional results can be obtained by the

consideration of acoustic power. The definition of acoustic intensity due to Morfey [6] is valid as

part of a conservation law in non-uniform ducts for compressible potential flow. This definition

of acoustic intensity is used in the uniform flow sections on either end of the nonuniformity to

obtain acoustic power expressions.

For propagation in uniform flow the Morfey intensity formulation simplifies to the scalar

form

1/p c_ (1 +MZ)pu +9rc Mu 2 +--pc Mp2 (44)

Acoustic power is obtained by integration over a cross section, to yield

ll
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P - ff ((1+ M2)pu+ p cMu2+ l__ Mp 2
ArefP_ c3 s P rCr

dS (45)

A modal expansion as given by equations (26) and (27) is used to obtain an acoustic power in

terms of acoustic potential modal amplitudes. The result is

P
........ (46)-a P a +a P a

3 [I 11
Ar,f 9 _ c®

where, for example, a" denotes the complex conjugate of a. Power can be represented in

terms of acoustic potential amplitudes as in equation (46) in uniform duct sections at x = 0 and

÷÷

x = L. The power coefficients Pll and P1-1- are one dimensional analogs of power matrices

introduced in [1]. No acoustic power is attributed to the interaction of acoustic modes because

there are no cut-offmodes in this one dimensional model. The power coefficients can be easi!y

obtained by using the results for the plane wave mode from the general expressions of [1],

,+ _ i 1
P11 2 9r c nrl°2A° ' Pl-t- = - 2 Or C% rl02A 0 (47)

+ : II This isEnergy conservation arguments lead to the conclusion that IIi,,c Ilre f trans"

the traditional result, simplified from the result of [1 ] because of the absence of interaction power

associated with cut-off modes. Incident power at x = 0 is given by

17 =a* R*P'* R a*
inc 1 11 0 1

Reflected power in nominal and reversed flow at x = 0 is given by

1I
ref + Rt'pi-/0R I +

=a a
• ÷

lief = a" R 2"PI-1-° R 2 a

(48)

12

163



Transmitted power in nominal and reversed flow x ; L is given by

• 1. t- + +=a T P Tla , E"[-[trans 11 £ trana " "=a a

(48)

Subscripts on the power coefficients denote the uniform section in which they are evaluated.

From equation (29) R 1 = R z , that is, the acoustic potential reflection coefficient is invariant

to flow direction, as is Pll" Therefore, the power reflection coefficient defined by either

RI" Pll R1 12 R; Ptl, R2 _ I R2 [z (49)
R o- Pll _ -[R 1 or R%- Pll

n q

The power reflection coefficient is invariant to flow direction, R = R . It is concluded that the
g9 r_B

power transmission coefficient are aiso invariant to flow direction, iv = iv . A simiIar
_@ rc 8

development based on equation (30) would show that 17=o = )7% and therefore that _e = _0"

It is now possible to connect the power transmission coefficients when the source is

moved from one end of the duct to the other. For a source at x = 0 the power transmission

coefficient (the ratio of transmitted to incident power) is in nominal flow

Pit [Tx[z _ P,.,, c,.n Az,

LO - PII n prrl c-_A 0 ITI12 (50)

For a source at x = L in reverse flow the power transmission coefficient is defined for right to

left power according to

T; PllTT2 2°112 t_212 - Pr n Cr ° A 0

ell° - e,, % c/A 0
q

13

(51)
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Equations (50) and (51) are deduced by using the definitions of incident and transmitted power

appropriately evaluated at x = 0 or x = L. The reciprocal relationship of equation (3 l) is used

to replace T2 in equation (51) yielding the result

p% c AL 12_ rl

_° Or cr "40 (rl
q u

(52)

It has thus been shown that /_ = T It is therefore concluded that T = T = i_ = T and
rctt '_0" 70 r_O _0 _0

thence from power conservation arguments that R = R =/_ =/_ . This completes the
rco _0 rc 8 r:0

interesting result that for the one dimensional model power reflection and transmission

coefficients are invariant to flow reversal and switching of the source location.

The result that T = T states that the transmission coefficient for the nominal flow

direction is the same from either end of the duct. This result contains the invariance theorem of

Davis [4], but also admits a generalization. Davis found that for a converging-diverging non-

uniformity in an otherwise uniform duct, for equal pressure amplitude input at the upstream and

downstream ends of the duct, the transmitted power is related by

II1 (1 +M'f

I_ 1 ( I - _,f)2

(53)

Here 1-[1 is the transmitted power at the downstream end due to a source at the upstream end

and I_ t is the transmitted power at the upstream end due to a source at the downstream end,

both in the nominal flow. Because the result of Davis is for a converging diverging duct, with

both ends of the same area, M 0 = M L = M.

By using equations (46) and (47), which define acoustic power in terms of acoustic

potential amplitudes, and by modifying them using equations (35)-(37) to relate acoustic pressure

amplitude to acoustic potential amplitude, the incident power at x = 0 is

1 Ao

H c(x = 0) = -_lpo'l z pr----_(1 + M0 )2 (54)
r

rl n

Similarly, for an acoustic pressure input at x = L , the incident power there is

14
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1 2 AL

l_i.c(x= L) = i[/5L-I p--_(1 - ML) 2 (55)

÷

P0 and /_r.- are pressure mode amplitudes incident at the ends x - 0 and x = L.

Superscripts + and - reinforce the idea that at x = 0 the incident mode is a right running wave

and at x = L the incident mode is a left running wave. The tilde ( - ) reminds that the source is

at the end x = L. By using the fact that the transmitted power in each case is the product of the

incident power and the appropriate power transmission coefficient, which is the same for either

case ( T = T ), and that the incident modal pressure amplitudes are the same for either
It O r:@

source ( [P0"[ = I/Sr.-I )' it follows that

IIo _ A o P_ c (1 +Mo) 2

_ At. p,. c.,, (1 -ML )2

 (56)

Equation (56) contains Davis' result [4] in the case of a converging diverging duct when the duct

area, flow density, speed of sound and Mach number are the same at both ends. Other results are

possible involving acoustic potential and acoustic pressure amplitudes from the core result that

the power transmission coefficients are invariant.

CONCLUSION

A reverse flow theorem for acoustic propagation in one dimensional compressible

potential flow has been obtained directly from the field equations without recourse to energy

conservation arguments. A reciprocity theorem for the scattering coefficients for propagation of

acoustic modes has been obtained. Reciprocal relations and power conservation arguments are

used to show that scaled power reflection and transmission coefficients are invariant to flow

reversal and switching of source location from one end of the duct to the other.

Numerical verification of the reciprocal relationships has been made using a finite

element model for duct propagation, and is reported in a companion paper [5].
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NUMERICAL EXPERIMENTS ON ACOUSTIC RECIPROCITY

IN COMPRESSIBLE POTENTIAL FLOWS

Walter Eversman

Mechanical and Aerospace Engineering

and Engineering Mechanics

University of Missouri-RoIla

Rolla, MO 65401

ABSTRACT

A reciprocity theorem for the scattering matrix for propagation of acoustic modes in a

duct with acoustically hard walls or with acoustically absorbing walls has been given in a

companion publication. It was found that for a source at a specified end of the duct, suitably

scaled reflection matrices in direct and reverse flow have a reciprocal relationship. Scaled

transmission matrices obtained for direct flow and reversed flow with simultaneous switching of

source location from one end to the other also have a reciprocal relationship. A reverse flow

theorem for the equivalent one dimensional propagation model, which is a good approximation

to the three dimensional model at low frequencies, was also obtained. In this case, using

reciprocity and acoustic power conservation argannents it is additionally found that the acoustic

power transmission coefficient is the same for a source at either end of the duct for a given flow

direction. This result leads to an invariance theorem which relates acoustic power propagated due

to sources of equal pressure amplitude at the two ends of the duct. Numerical verification of

these reciprocal relationships is given here for propagation in axially symmetric (circular and

annular) ducts with multi-modal propagation and at low frequencies when a one dimensional

model is appropriate.

INTRODUCTION

In two companion papers [ 1,2], a reverse flow reciprocity theorem has been developed for

acoustic propagation in non-uniform ducts carrying compressible mean flow. In [1] the general

case of multi-mode propagation is considered and reciprocity is shown for ducts with either rigid

walls or with walls which include a normally reacting, dissipative section. For a source at one
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end of the duct, scaled reflection matrices in direct and reverse flow have a reciprocal

relationship. Scaled transmission matrices obtained for direct flow and reversed flow with

simultaneous switching of source location from one end to the other also have a reciprocal

relationship. In [2] reverse flow reciprocity is shown for the long wave length approximation

when a one dimensional model is applicable. In this case acoustic treatment is not part of the

model. Results similar to the multi-modal case are established for reciprocal relationships for

reflection and transmission coefficients. Additional results which are part of a general power

transmission invariance principal are also found as a result of reciprocity and energy

conservation. This invariance principal contains as a special case a result found by Davis [3].

The reverse flow reciprocity theorem is developed directly from an integral relationship

based on the acoustic field equations, using an approach similar to that used in [4] in the case of

propagation in a non-uniform duct in the absence of flow. In particular, the development does not

begin with an energy principle. This is in distinction to the approach of Moehring [5,6]. The

major complication which arises in the present formulation is the case when a portion of the duct

wall is acoustically treated with a normally reacting dissipative lining. The boundary condition of

Myers [7] is manipulated, using identities of vector calculus suggested by Moehring [6], to make

it possible to establish reciprocity in this case.

The reverse flow reciprocity theorem is developed in detail in references [1] and [2] and

the results are briefly summarized here. Figure 1 shows a non-uniform duct section bounded on

either end by uniform sections (long enough to have essentially uniform flow so that acoustic

propagation can be synthesized in terms of duct modes). At the two ends of the duct the acoustic

field is the superposition of modes propagating to the right and to the left (including cut off

modes which technically do not propagate, but which can be segregated into right and left

modes). Amplitudes a _ and a - refer to right and left modes at the end x = 0 and b "
n ?i ?1

and b - refer to right and left modes at x = L. a", a -, b _, b -, are vectors of modal
/1

amplitudes. These modal amplitudes are related by the scattering matrix [S] according to

(ta f}ab" --IS] b-
(1)

2
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The scattering matrix is defined as

I[R] [2P] (2)is] = [2"1 fYl

Contained in [S] are the usual reflection matrix [R] and transmission matrix [T] for acoustic

modes incident at x = 0 and reflection and transmission matrices [R] and [T] for modes

incident at x = L. In multi-modal propagation the scattering matrix relates all modes which are

considered. In the case of one dimensional propagation (the long wave length approximation),

the scattering matrix relates only two modal amplitudes at each end. The reflection and

transmission matrices are scalars, defined as reflection and transmission coefficients.

In the context of reversed flow reciprocity there is a scattering matrix [S 1] for nominal

mean flow and a second one [$2] for reversed flow. It is the relationship between [S1] and

[$2] which is considered in [1,2]. Modal amplitudes in the present discussion are in terms of

acoustic potential duct modes, because the acoustic field equations are naturally in terms of

acoustic potentiaI. Equivalent results are obtained in [I,2] for acoustic pressure modal amplitudes

and it is only necessary at this point to refer to the properties of the acoustic potential scattering

matrices.

The reverse flow reciprocity principle is

= (3)

or

= ([J][cc][S2l) r (4)

The diagonal matrices [J] and [a] are scaling matrices which have elements depending on

the mode considered. The evaluation of these matrices is covered in detail in [ 1,2].

Equations (3) and (4) show that a weighted version of the nominal flow acoustic potential
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scattering matrix and similarly weighted version of the reversed flow acoustic potential scattering

matrix are transposes of one another. In terms of the acoustic potential reflection and

transmission coefficient matrices the result is

[R_]r[Jo] [%] : [Jo] [%] [R2]
(5)

[_llr[ZL] [c_:] : [J:] [c_:][-_2]
(6)

rr_7:[J<]r_L]: rJo][=o][_1
(7)

[t_]:[Zo][%] : [z:] [_:] [r_]
(8)

Subscripts 0 and /; refer to the evaluation of the relevant scaling coefficients at the two ends

x = 0 and x = L . The reciprocal relationships of equations (5)-(8) involve acoustic potential

reflection and transmission coefficient matrices, with diagonal elements representing reflection

and transmission coefficients in the incident modes (here referred to as direct reflection or

transmission) and off diagonal reflection and transmission coefficients from the incident mode to

another mode. Equations (5) and (6) show that direct acoustic potential reflection coefficients

are invariant in reversed flow. The transmission coefficient matrix pairs [T1] , IT2] and

[ T1 ]' [ T2 ] are not reciprocally related but the pairs [ T I ] , [ T2 ] and [ Tl ]' [ 7"2] are related

by equations (7) and (8). The notation convention uses the subscripts 1 and 2 to denote flow

direction (1 being nominal, 2 being reversed). Tilde, or lack thereof denotes source location (tilde

denoting source location reversal).

In the one dimensional approximation [2] the same reciprocal relations apply, but

in a simplified form. Reflection coefficients in nominal and reversed flow are invariant:
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R 1 = R z (9)

(10)

Scaled transmission coefficients are invariant to simultaneous flow reversal and source plane

reversal:

Or L Pro

TlA L- - _2Ao_
C C

r L r o

(11)

T2AL P,_. _ O_o- r XoT-
r L r o

(I2)

In the case of one dimensional propagation there are additional results which can be

deduced based on reciprocity and energy conservation. Power transmission coefficients T
7_

are defined as the ratio of transmitted power to incident power. It is found that

T =r =T =it (13)
_1 _2 7%1 7_2

Here, as in the previous discussion the subscripts 1 and 2 refer to flow direction and the tilde or

lack thereof refers to source location. Power transmission coefficients are invariant to flow

reversal and source location reversal. That is, the power transmission coefficient is the same for

flow in either direction, for a source at either end of the duct. Power reflection coefficients R
"N

are defined as the ratio of reflected power to incident power. It is also found that

= = : . (14)R R 2 _ R'_2

Power reflection coefficients are invariant to flow reversal and source location reversal.

5
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The results summarized by equations (5)-(14) are interesting theoretically and also

provide useful benchmarks which can be used to validate propagation calculations. In the

following sections two finite element codes for duct propagation, one multi-modal and the other

one dimensional, are used to demonstrate several of these reciprocal relations.

ACOUSTIC PROPAGATION IN A COMPRESSIBLE POTENTIAL FLOW

Reciprocity relations previously described will be verified by computations based on two

FEM codes for duct propagation, one for multi-modal propagation and the other specialized for

one-dimensional propagation. In this section only a brief description of the multi-modal

propagation code will be given. Details of the FEM modeling approach can be found in

references [8,9].

A formulation in terms of acoustic potential is used to produce a weak formulation

suitable for finite element discretization to reduce the field equations to a single scalar variable.

The geometry of the duct in Figure l, and the steady flow field is axially symmetric. The

acoustic field is not axially symmetric but is represented as azimuthally periodic in a cylindrical

coordinate system with x being the axis of symmetry, r the cylindrical radius in a circular

cross section at x = 0, and O the angular coordinate. Solutions are sought in angular harmonics

of a Fourier Series in 0 enumerated by the angular mode number m . This reduces the solution

domain to a two dimensional x, r plane, shown in Figure 1. The duct shape in a @ = constant

plane shows the surface S which defines the duct shape and could include an inner surface for

an annular duct. Part of S includes S , which is a locally reacting acoustic treatment.
w

The acoustic field is assumed to be harmonic in time at non-dimensional frequency fir.

Geometry is non-dimensional based on a reference length generally chosen as the radius of the

inlet at the source plane, R. Acoustic and steady flow variables are non-dimensional based on

reference values of the speed of sound and density of the medium, p_, c®, generally defined at

the plane of the acoustic source. The non-dimensional frequency is rlr = _ R / c, with _the

harmonic source frequency.

Field equations for continuity and momentum and the isentropic equation of state are

6
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used in a weighted residual statement to obtain an integral formulation which is then written in

discrete form using standard FEM procedures. In terms of acoustic potential the weak

formulation is

""Pr 2

_c-

(15)

where the local non-dimensional steady flow velocity is _ = Vqb, with qb the non-

dimensional steady flow velocity potential. The local non-dimensional density and speed of,

sound are 9r , c. The surface integral on the right hand side introduces the noise source and

termination conditions on S O or S L and a possible impedance boundary condition on S inside

the duct. In the present investigation it is the impedance boundary condition which is of interest

on S, a portion of S. In equation (15), the weighted residuals statement, W represents an

arbitrary weighting function selected from the class of continuous functions. In this weak

formulation the approximation to the solution dp is also chosen from the class of continuous

functions

At a duct wall the mean flow is tangential to the wall and V • ff = 0 causing the
¥

boundary, integal (the contribution to the right hand side of equation (1) related to the impedance

condition) to become

zb=f f orwv,.ndS (16)

It is shown in [10 ] that at a wall of admittance A the weighted residual boundary integral of

equation (16) on the duct surfaceS, derived from the Myers boundary condition [7], is

176



An accurate representation of this impedance boundary condition is essential to obtaining

verification of reciprocal relationships when acoustic treatment is inserted in the duct wall [ 10].

References [8,9 ] deal with propagation and radiation to the far field from open ended ducts. In

the code described here, rather than model radiation to the far field from the open end, imposes

non-reflecting boundary condition at the termination. The boundary integral of equation (15) is

used to introduce the source (at either end of the duct) as a superposition of acoustic potential

duct modes and to implement the non-reflecting boundary condition based on another

superposition of duct modes. The one-dimensional code is based on the one-dimensional field

equations [2], and therefore has no provision for acoustic treatment. Other details of this code are

similar to the multi-modal code. In both cases the steady mean flow field which is required data

for propagation calculations is provided by an FEM potential flow code which introduces

compressibility by iteration of successive incompressible flow problems. Steady flow is

produced on the acoustic FEM mesh for convenience of data transfer.

The FEM duct codes provide solutions for the acoustic potential field which is post-

processed to obtain acoustic pressure. Included as part of the solution are the acoustic potential

modal amplitudes a _, a -, b + , b - . These are also converted to acoustic pressure modal

amplitudes. Additional post-processing produces computations of acoustic power and power

reflection and transmission coefficients.

NUMERICAL EXPERIMENTS ON RECIPROCITY

The first numerical verification of the reciprocal characteristics of the scattering matrix

for an axially symmetric duct has been carried out in the case of a duct with a transition from

annular to circular, as shown in an x, r slice in Figure 2. The interior contour is that of a typical

turbofan inlet and the uniform extensions are added to meet the requirements of the present
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analysis (uniform flow and proper definition of acoustic eigenfunctions). The finite element

mesh used in the computations is shown on this figure and is typical for examples cited here. The

conditions for the "nominal" case are standard atmospheric conditions at the source plane (x = 0

), Mach number at the source plane M 0 = 0.27 , directed left to right (opposite to the direction

in an inlet). The non-dimensional frequency (based on the source plane) is rlr = 10 . In the

nominal case the input plane for scattering is the source plane at x = 0 . Figure 3 shows iso-

potential contours for the steady compressible flow in the duct which varies roughly between

M = 0.27 and M = 0.15. Figure 3 is unaltered in form for reverse flow (right to left and in the

direction expected in an inlet). The acoustic analysis is based on input modes with angular

dependence m = 3 , for which there exist two propagating modes at each end of the duct (n=l,

n=2).The third mode, n=3, is cut offat both ends of the duct with cut-offratio _ = 0.87 at

x = 0 and _ -- 0.84 at x = L . Two cases of duct wall characteristics are studied. In the

first case the duct walls are acoustically hard, that is the impedance is infinite and the admittance

vanishes. In the second case the outer duct wall is acoustically treated from x = 1.0 through

80 % of the non-uniform section. The impedance is chosen as Z = 2.0 - 1.0 i, which is not

optimum for attenuation for the given conditions, but is not untypical for aircraft applications.

The acoustic power attenuation with the simplest radial mode incident (m=3, n=l) is about 9 dB,

so there is a significant decrease in acoustic power from one end of the duct to the other,

attributable to the wall treatment.

To generate the scaled reflection and transmission coefficient matrices in this case input

modes n = 1 , n = 2 and n = 3 are considered. This produces 3 x 3 matrices which include

two propagating modes and one mode which is cut off at both ends. To build the reflection and

transmission matrices to verify equations (5) and (7) it is required to consider nine propagation

cases: three input modes at x = 0 for nominal flow; three input modes at x = 0 for reverse

flow; and three input modes at x = L for reverse flow.

Reference to contours of equal acoustic pressure provide evidence of the differences

induced by varying the source mode number, source location and the flow direction. Figure 4

shows acoustic iso-pressure contours for the duct with acoustic treatment when the input radial

mode at x = 0 is n = 1. There is significant scattering and this is verified by reference to the

9
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scatteringcoefficients.Figure5 showsthecaseof mode n = 3 input at x = L in reverse

flow. This mode is cut off at both ends, and it should be noted how rapidly the acoustic pressure

level is attenuated away from the source plane.

Table 1 shows the scaled acoustic potential reflection coefficient matrix in nominal flow

with the scattering plane (acoustic source plane) at x = 0, which corresponds to the left hand

side of equation (5). Table 2 is the reflection matrix at x = 0 in reversed flow, corresponding to

the right hand side of equation (5). Equation (5) predicts that these matrices should be

reciprocals of one another. Tables 1 and 2 verify this with exceptional accuracy.

mode 1 2 3

1 -0.14380 0.03098 i -0.13986 + 0.07217 i -0.153(-4) - 0.549(-5) i

2 -0.13746 + 0.71323 i -0.04113 + 0.20572 i 0.104(-3)+0.732(-5)i

3 -0.424(-5) + 0.841(-5) i -0.144(-4)- 0.903(-4) i -0.682(-5) + 0.497(-8)]

Table 1. Scaled acoustic potential reflection coefficients for nominal flow and source at x = 0

for the transition from an annular to circular hard wall duct. Corresponds to the left hand side of

equation (5).rl r = 10 , m =3.

mode 1 2 3

1 -0.14380 0.03098 i -0.13746 + 0.71323 i -0.424(-5) +0.841(-5) i

2 -0.13986 + 0.07217i -0.04113 + 0.20572 i -0.144(-4) - 0.903(-8) i

3 -0.153(-4) - 0.549(-5) i 0.104(-3) + 0.732(-5) i -0.682(-5) + 0.497(-8) i

Table 2. Scaled acoustic potential reflection coefficients for reverse flow and source at x = 0

for the transition from an annular to circular hard wall duct. Corresponds to the right hand side of

equation (5).rlr = 10 , m =3.

Tables 3 and 4 verify the prediction of equation (7). Table 3 gives the scaled acoustic

potential transmission coefficients in nominal flow with the source at x = 0 . Table 4 gives the

10
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scaled transmission coefficients in reversed flow with the source shifted to x = L . Equation (7)

predicts a reciprocal relationship which is accurately substantiated in Tables 3 and 4. A point of

interest in the results shown in Tables 1 through 4 is that reciprocity extends to cutoff modes in

which case the power transmission is only accounted for by interaction of left and right modes.

mode 1 2 3

1 -4.12246 + 0.00532i -0.56880 + 0.23281i 0.151(-4)-0.109(-4)i

2 0.58902 + 0.37376 i -1.74565 - 0.27580i 0.834(-4)+0.174(-4)i

3 -0,300(-4) 0.897(-4) i -0.I69(-3) + 0.i05(-3) i 0.808(-8) - 0.488(-8) i

Table 3. Scaled acoustic potential transmission coefficients for nominal flow and source at

x = 0 for the transition from an annular to circular hard wall duct. Corresponds to the left hand

side of equation (7). fir = 10 , m = 3.

I

mode ] 1 2 3
i

1 -4.12246 + 0.00532 i 0.58902 + 0.37376 i -0.300(-4) - 0.897(-4) i

2 -0.56880 + 0.23821 i -1.74565 - 0.27580i -0.169(-3) -0.105(-3) i

3 0.151(-4) - 0.109(-4) i 0.834(-4) + 0.174(-4) i 0.808(-8) - 0.488(-8) i

Table 4. Scaled acoustic potential transmission coefficients for reverse flow and source at x = L

for the transition from an annular to circular duct. Corresponds to the right hand side of equation

(7). r_r = 10 , m =3.

Tables 5 through 8 are for the case with acoustic treatment in place. Table 5 shows the

scaled acoustic potential reflection coefficient matrix in nominal flow with the scattering plane

(acoustic source plane) at x = 0 , and with the nonuniform portion of the duct outer wall

acoustically treated. This corresponds to the left hand side of equation (5). Table 6 is the

reflection matrix at x = 0 in reversed flow, corresponding to the right hand side of equation (5)

for the same acoustic treatment configuration. Equation (5) predicts that these matrices should

11
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be reciprocals of one another. Tables 5 and 6 verify this, again with exceptional accuracy.

mode 1 2 3

1 0.16904 - 0.23900 i -0.12975 - 0.18014 i -0.482(-3) - 0.677(-4) i

2 -0.07368 0.10133 i -0.00984 - 0.03495 i -0.275(-3) + 0.950(-4) i

3 -0.305(-3) + 0.632(-5) i -0.283(-3) + 0.556(-5) i -0.693(-5) + 0.510(-6) i

Table 5. Scaled acoustic potential reflection coefficients for direct flow and source at x = 0 for

the transition from an annular to circular acoustically treated duct. Corresponds to the left hand

side of equation (5). rlr = 10 , m = 3.

mode 1 2 3

1 0.16904 - 0.23900 i -0.07368 - 0.10133 i -0.305(-3) + 0.632(-5) i

2 -0.12975 - 0.18014 i -0.00984 - 0.03495 i -0.283(-3) + 0.556(-5) i

3 -0.482(-3) - 0.677(-4) i -0.275(-3) + 0.950(-4) i -0.693(-5) + 0.510(-6) i

Table 6. Scaled acoustic potential reflection coefficients for reverse flow and source at x = 0

for the transition from an annular to circular acoustically treated duct. Corresponds to the right

hand side of equation (5). rlr = 10 , m =3 .

Tables 7 and 8 verify the prediction of equation (7) in the case of an acoustically treated

outer wall. Table 7 gives the scaled acoustic potential transmission coefficients in direct flow

with the source at x = 0 . Table 8 gives the scaled transmission coefficients in reversed flow

with the source shit_ed to x = L . Equation (7) predicts a reciprocal relationship which is

accurately substantiated in Tables 7 and 8. Again, the applicability of the reciprocity principle to

cut-off modes is verified.
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mode 1 2 3

1 -1.21549 + 0.02495 i -0.25788 + 0.60030 i 0.780(-4) - 0.227(-3) i

2 0.38577 - 0.37557 i -0.76395 + 0.24663 i 0.146(-3) - 0.741(-4) i

3 -0.319(-4) - 0.753(-4) i -0.532(-4) + 0.849(-4) i 0.109(-7) - 0.205(-7) i

Table 7. Scaled acoustic potential transmission coefficients for direct flow and source at x = 0

for the transition from an annular to circular acoustically treated duct. Corresponds to the left

hand side of equation (7). rlr = 10 , m = 3 .

mode 1 2 3

1 -1.21549 + 0.02495 i 0.38577 - 0.37557 i -0.319(-4) - 0.753(-4) i

2 -0.25788 + 0.60030 i -0.76395 + 0.24663 i -0.532(-4) + 0.849(-4) i

3 0.780(-4) - 0227(-3) i 0.146(-3) - 0.741(-4) 0.109(-7) - 0.205(-7) i_

Table 8. Scaled acoustic potential transmission coefficients for reverse flow and source at x = L

for the transition from an annular to circular acoustically treated duct. Corresponds to the left

hand side of equation (7). 1"1,= 10 , m = 3 .

The next case considered involves a steady flow in which the Mach number becomes

relatively high, emphasizing the dependence of the acoustic treatment boundary condition on

Mach number. An additional complication introduced here is the segmenting of the acoustic

treatment into two equal length parts with different impedances, spanning the entire transition

section. A continuous transition occurs within one element of the FEM mesh. The impedances in

this case are Z 1 = 2.0 - 1.0 i , Z 2 = 3.0 - 2.0 i (numbered left to right). This satisfies

the requirement of the reciprocity theorem and also simulates a near discontinuity of impedance.

Here a converging duct with a contraction ratio of o = 0.5, as shown in Figure 6, accelerates the

flow (iso-potential contours are shown on Figure 6) from a Mach number at the nominal source

plane of M = 0.13 to M = 0.71 at the exit plane. An acoustic propagation analysis has been

13
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carried out for the non-dimensional frequency rlr = 10 for a source with angular mode m = 3.

In this geometry and the resulting steady flow there are two propagating modes at x = 0

(determined in the hard wall case), but just one propagating mode at x = L . Results given here

are for scaled potential reflection and transmission matrices. 3 x 3 reflection and transmission

matrices are investigated by considering input radial modes n = 1 , n = 2, and n = 3. At

x = 0 the two propagating modes and one cut-offmode have cut-offratios

= 2.40 , _ = 1.26 , _ = 0.89, respectively. At x = L the single propagating mode and two

cut offmodes have cut-offratios { = 1.65 , _ = 0.87 , _ = 0.61. An interesting feature of

this geometry and flow is that mode n = 2 makes a transition from cut on to cut offin going

from left to fight. Mode n = 3 is deeply cut off at x = L .

Figxlre 7 shows acoustic iso- pressure contours for the case of nominal flow (left to fight)

with the mode n = 1 input at x = 0. The contours are consistent with a well cut on mode

and significant scattering. Figxlre 8 shows contours for the case of reverse flow (fight to left).

with the source at the end x = L, and the input mode n = 3 . This mode is deeply cut off and

it should be noted how rapidly the acoustic pressure levels decay away from the source plane. It

can be concluded that this mode effectively produces no acoustic pressure at x = 0 .

Tables 9 through 12 are presented to verify the predicted reciprocal characteristics of the

scaled acoustic potential reflection and transmission coefficients. Tables 9 and 10 show the

scaled pressure reflection coefficients for nominal flow (left to fight) and reverse flow (fight to

left) with the source at x = 0 . These correspond with the left and fight hand sides of equation

(5). The reflection matrices shown in these two tables are seen to be reciprocals, as predicted.
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mode 1 2 3

1 0.16566 + 0.11529 i 0.23310 + 0.05472 i -0.00056 - 0.00099 i

2 0.20720 + 0.09263 i -0.02814 + 0.01965 i 0.00035 - 0.00035 i

3 -0.00044 - 0.00067 i -0.00069 - 0.00111 i -0.291(-4) + 0.286(-5) i

Table 9. Scaled acoustic potential reflection coefficients for direct flow and source at x = 0 for

the converging circular acoustically treated duct. Corresponds to the left hand side of equation

(5).rl, " = 10 , m =3.

mode 1 2 3

1 0.16566 + 0.11529i 0.20720+0.09623 i -0.00044 -0.00067i

2 0.23310 + 0.05472 i -0.02814+ 0.01965 i -0.00069 - 0.00111 i

3 -0.00056 - 0.00099 i 0.00035 - 0.00035 i -0.291(-4) + 0.286(-5)-i

Table 10. Scaled acoustic potential reflection coefficients for reverse flow and source at x = 0

for the converging circular acoustically treated duct. Corresponds to the right hand side of

equation(5), rlr = 10 , m = 3.

Tables 11 and 12 show the scaled potential transmission coefficients for nominal flow

(left to right) with the source plane at x = 0 and reverse flow (right to left) with the source at

x = L . These correspond with the left and right hand sides of equation (7). The reflection

matrices shown in these two tables are seen to be reciprocals for modes n = 1 , n = 2.

Reciprocity involving mode n = 3 seems to fail. The reason for this can be deduced by

referring back to Figure 8 and noting that the deeply cut off mode n = 3 creates acoustic

pressure levels at x = 0 which are probably unresolvable with accuracy by the numerical

model. To test this hypothesis, another test of reciprocity with the same geometry, flow, and

mode number was carried out, but with the non-dimensional frefluency increased to rlr = 12

( from rl_ = 10 ). This changes the cut-offratios for the modes n = 1 , n = 2 , n = 3 to

= 2.88 , _ = 1.51 , _ = 1.07 at :c = 0 and _ = 1.98 , _ = 1.04 , _ =0.73 at x =L.
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This makes three propagating modes at the left end and two propagating modes at the right end,

and retains the interesting feature of the transition from cut on to cut offfor mode n = 3 in a

transition from left to right, or from cut off to cut on in the opposite direction.

mode 1 2 3

1 -0.18538 + 0.24017 i 0.04016 + 0.13443 i -0.223(-5) - 0.286(-6) i

2 0.374(-4)- 0.570(-4) i -0.115(-4) - 0.288(-4) i O. 110(-8) - 0.344(-8) i

3 -0.521(-7) + 0.116(-6) i 0.301(-7) - 0.507(-7) i 0.260(-11) + 0.595(-11) i

Table 11. Scaled acoustic potential transmission coefficients for direct flow and source at x = 0

for converging circular acoustically treated duct. Corresponds to the left hand side of equation

(7). rl," 10 , m 3.

mode

1

2

3

1 2 3

-0.18538 + 0.24017 i 0.374(-4) - 0.570(-4) i -0.521(-7) + 0.116(-6) i

0.04016 + 0.13443 i -0.115(-4) - 0.288(-4) i 0.301(-7) + 0.507(-7) i

0.00014 - 0.00005 i 0.332(-7) + 0.961(-8) i -0.644(-10) - 0.770(-11) i

Table 12. Scaled acoustic potential transmission coefficients for reverse flow and source at

x = L for the converging circular acoustically treated duct. Corresponds to the left hand side of

equation(7), rlr = 10 , m =3.
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mode 1 2 3

1 -0.08862 + 0.41280 i 0.31074 - 0.05362 i 0.03674 + 0.06580 i

2 -0.02353 - -0.00062 i 0.02811 - 0.03804 i 0.00839 - 0.00304 i

3 0.877(-5) - 0.791(-5) i 0.0255(-5) + 0.237(-4) i -0.208(-5) + 0.397(-5) i

Table 13. Scaled acoustic potential transmission coefficients for direct flow and source at x = 0

for converging circular acoustically treated duct. Correspond s to the left hand side of equation

(7). 11," 12 , m 3.

mode 1 2 3

1 -0.08862 + 0.41280 i -0.02353 - 0.00062 i 0.877(-5) - 0.791(-5) i

2 0.31074 - 0.05362 i 0.02811 - 0.03804 i 0.255(-5) +0.237(-4) i

3 0.03674 + 0.06580 i 0.00839 - 0.00304 i -0.208(-5) +0.397(-5) i

Table 14. Scaled acoustic potential transmission coefficients for reverse flow and source at

x -- L for the converging circular acoustically treated duct. Corresponds to the left hand side of

equation (7). rlr = 12 , m = 3 .

Figure 9 shows acoustic iso-pressure contours for the case of reverse flow, with the

source at the right end with n = 3 and rlr = 12 The contour levels show that at the left end

the acoustic pressure levels are substantially higher than those shown in Figure 8, and they are

more accurately resolved by the modeling scheme.

Tables 13 and 14 show the scaled potential transmission coefficients for nominal flow

(left to right) with the source plane at x = 0 and reverse flow (right to left) with the source at

x = L . The non-dimensional frequency is rlr = 12. Now reciprocity is satisfied (a reciprocal

relationship of the scaled transmission matrices) to a high level of accuracy. It is concluded that

17

186



accurate resolution of the acoustic field of the deeply cut off mode n = 3 . This warns that there

is a practical limit beyond which reciprocity may not be verifiable for cut offmodes.

A final example considers the converging circular duct profile previously shown in

Figure 6 with the same steady flow Mach number, but in this case treated as one dimensional.

Inlet and exit Mach numbers for the nominal flow are M = 0.13 and M = 0.71. Acoustic

propagation is also taken to be one dimensional at non-dimensional frequency rl_ = 1.0 based

on a reference length which is the radius (of an assumed circular cross section) of the duct at the

nominal source plane x = 0. This scaling makes everything Consistent with the axially

symmetric duct formulation. Propagation at the chosen frequency has been modeled by the

axially symmetric formulation using angular mode m = 0 and radial mode n = 1. Iso-

potential contours for the steady flow are shown in Figure 6 and iso-acoustic pressure contours

are shown in Figure 10 (with longer uniform extensions at the two ends, as compared to Figure

6). Because of the duct contour and steady flow there is noticeable deviation from true one

dimensional propagation, however there is no indication of substantial scattering into higher

order modes, which the one dimensional theory necessarily excludes.

Table 15 is a summary of the reciprocity and power invariance benchmark tests which are

available in the one dimensional case. The results of (a) and (b) substantiate the reciprocity

statement of equation (9) and the results of (c) and (d) substantiate the reciprocity statement of

equation (11). The power results (e)-(1) substantiate the observations based on power

considerations that power reflection and transmission coefficients are independent of flow

direction and source location (equations (13) and (14)). As an indication of the comparison

between the axially symmetric (3-Dim) duct model and the one dimensional model, power

reflection and transmission coefficients for the axially symmetric model are shown also. The

invariance of the power transmission and reflection coefficients to flow direction and source

location is true (numerically) at low fi'equencies in the axially synmaetric duct and the one

dimensional predictior_sof reflection and transmission characteristics quite favorably correlate

with predictions of the axially symmetric model. The properties of invariance of the power

reflection and transmission coefficients is not generally true at higher frequencies in the axially

symmetric model when scattering into higher or lower modes occurs.
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Coefficient

(a). Reflection coefficient,

direct flow, source left

(b). Reflection coefficient,

reverse flow, source left

(c). Scaled transmission coefficient,

direct flow, source left

(d). Scaled transmission coefficient,

reverse flow, source left

(e). Power reflection coefficient,

direct flow, source left:

(f). Power reflection coefficient,

reverse flow, source left

(g). Power reflection coefficient,

direct flow, source right

(h). Power reflection coefficient,

reverse flow, source right

(i). Power transmission coefficient, direct

flow, source left

(j). Power transmission coefficient, reverse

flow, source left

Power transmission coefficient, direct

flow, source right

(k).

(1). Power transmission coefficient, reverse

flow, source fight

3-Dim

0.171105

0.171105

0.171105

0.171105

0.828895

0.828895

0.828895

1-Dim

0.187517

0.187517

0.187517

0.187517

0.812483

0.812483

0.812483

0.828895 0.812483

1-Dim

0.430129 + 0.050053i

0.430129 + 0.050053i

0.384607 + 0.145370i

0.384607 + 0.145370i

Table 15. Summary of scattering matrix reciprocity and power invariance benchmark tests for a

one dimensional converNng duct, with power invariance comparisons for an axially symmetric

model. M 0 = 0.13, M L = 0.71, rl r = 1.0 (m = 0 , n = 1 in the axially symmetric case).
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CONCLUSION

Numerical verification of the reciprocal relationships derived in References [1,2] has

been accomplished using a finite element model for duct propagation. Three cases have been

presented for an axially symmetric duct model, one introducing the feature of transition from an

annular to a circular duct without and with acoustic treatment, and the second introducing a

converging duct with substantial steady flow acceleration and segmented acoustic treatment. A

fourth case is presented for the converging duct at low frequency where a one dimensional

model of propagation is appropriate. Reciprocal characteristics of the scattering matrices are

verified with exceptional accuracy, as are predicted relationships for power reflection and

transmission coefficients in the one dimensional case.
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